网格定位的小深度网格证明

J. Håstad
{"title":"网格定位的小深度网格证明","authors":"J. Håstad","doi":"10.1145/3425606","DOIUrl":null,"url":null,"abstract":"We prove a lower bound on the size of a small depth Frege refutation of the Tseitin contradiction on the grid. We conclude that polynomial size such refutations must use formulas of almost logarithmic depth.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"On Small-Depth Frege Proofs for Tseitin for Grids\",\"authors\":\"J. Håstad\",\"doi\":\"10.1145/3425606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a lower bound on the size of a small depth Frege refutation of the Tseitin contradiction on the grid. We conclude that polynomial size such refutations must use formulas of almost logarithmic depth.\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3425606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3425606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

我们证明了小深度的一个下界,从而反驳了网格上的tseittin矛盾。我们得出结论,多项式大小的反驳必须使用几乎对数深度的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Small-Depth Frege Proofs for Tseitin for Grids
We prove a lower bound on the size of a small depth Frege refutation of the Tseitin contradiction on the grid. We conclude that polynomial size such refutations must use formulas of almost logarithmic depth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信