基于网络边缘压缩的车联网视觉里程计卸载

Qingqing Li, J. P. Queralta, Tuan Anh Nguyen Gia, H. Tenhunen, Zhuo Zou, Tomi Westerlund
{"title":"基于网络边缘压缩的车联网视觉里程计卸载","authors":"Qingqing Li, J. P. Queralta, Tuan Anh Nguyen Gia, H. Tenhunen, Zhuo Zou, Tomi Westerlund","doi":"10.23919/ICMU48249.2019.9006652","DOIUrl":null,"url":null,"abstract":"A recent trend in the IoT is to shift from traditional cloud-centric applications towards more distributed approaches embracing the fog and edge computing paradigms. In autonomous robots and vehicles, much research has been put into the potential of offloading computationally intensive tasks to cloud computing. Visual odometry is a common example, as realtime analysis of one or multiple video feeds requires significant on-board computation. If this operations are offloaded, then the on-board hardware can be simplified, and the battery life extended. In the case of self-driving cars, efficient offloading can significantly decrease the price of the hardware. Nonetheless, offloading to cloud computing compromises the system's latency and poses serious reliability issues. Visual odometry offloading requires streaming of video-feeds in real-time. In a multivehicle scenario, enabling efficient data compression without compromising performance can help save bandwidth and increase reliability.","PeriodicalId":348402,"journal":{"name":"2019 Twelfth International Conference on Mobile Computing and Ubiquitous Network (ICMU)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Visual Odometry Offloading in Internet of Vehicles with Compression at the Edge of the Network\",\"authors\":\"Qingqing Li, J. P. Queralta, Tuan Anh Nguyen Gia, H. Tenhunen, Zhuo Zou, Tomi Westerlund\",\"doi\":\"10.23919/ICMU48249.2019.9006652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recent trend in the IoT is to shift from traditional cloud-centric applications towards more distributed approaches embracing the fog and edge computing paradigms. In autonomous robots and vehicles, much research has been put into the potential of offloading computationally intensive tasks to cloud computing. Visual odometry is a common example, as realtime analysis of one or multiple video feeds requires significant on-board computation. If this operations are offloaded, then the on-board hardware can be simplified, and the battery life extended. In the case of self-driving cars, efficient offloading can significantly decrease the price of the hardware. Nonetheless, offloading to cloud computing compromises the system's latency and poses serious reliability issues. Visual odometry offloading requires streaming of video-feeds in real-time. In a multivehicle scenario, enabling efficient data compression without compromising performance can help save bandwidth and increase reliability.\",\"PeriodicalId\":348402,\"journal\":{\"name\":\"2019 Twelfth International Conference on Mobile Computing and Ubiquitous Network (ICMU)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Twelfth International Conference on Mobile Computing and Ubiquitous Network (ICMU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICMU48249.2019.9006652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Twelfth International Conference on Mobile Computing and Ubiquitous Network (ICMU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICMU48249.2019.9006652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

物联网最近的一个趋势是从传统的以云为中心的应用转向更分布式的方法,包括雾和边缘计算范式。在自主机器人和自动驾驶汽车领域,大量的研究都投入到了将计算密集型任务转移到云计算的潜力上。视觉里程计是一个常见的例子,因为对一个或多个视频馈送的实时分析需要大量的机载计算。如果卸载这些操作,则可以简化板载硬件,并延长电池寿命。以自动驾驶汽车为例,有效的卸载可以显著降低硬件的价格。尽管如此,卸载到云计算会降低系统的延迟,并带来严重的可靠性问题。视觉里程计卸载需要实时流视频馈送。在多车场景中,在不影响性能的情况下实现高效的数据压缩有助于节省带宽并提高可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual Odometry Offloading in Internet of Vehicles with Compression at the Edge of the Network
A recent trend in the IoT is to shift from traditional cloud-centric applications towards more distributed approaches embracing the fog and edge computing paradigms. In autonomous robots and vehicles, much research has been put into the potential of offloading computationally intensive tasks to cloud computing. Visual odometry is a common example, as realtime analysis of one or multiple video feeds requires significant on-board computation. If this operations are offloaded, then the on-board hardware can be simplified, and the battery life extended. In the case of self-driving cars, efficient offloading can significantly decrease the price of the hardware. Nonetheless, offloading to cloud computing compromises the system's latency and poses serious reliability issues. Visual odometry offloading requires streaming of video-feeds in real-time. In a multivehicle scenario, enabling efficient data compression without compromising performance can help save bandwidth and increase reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信