基于深度语言的推荐系统评价

Ga Wu, Kai Luo, S. Sanner, Harold Soh
{"title":"基于深度语言的推荐系统评价","authors":"Ga Wu, Kai Luo, S. Sanner, Harold Soh","doi":"10.1145/3298689.3347009","DOIUrl":null,"url":null,"abstract":"Critiquing is a method for conversational recommendation that adapts recommendations in response to user preference feedback regarding item attributes. Historical critiquing methods were largely based on constraint- and utility-based methods for modifying recommendations w.r.t. these critiqued attributes. In this paper, we revisit the critiquing approach from the lens of deep learning based recommendation methods and language-based interaction. Concretely, we propose an end-to-end deep learning framework with two variants that extend the Neural Collaborative Filtering architecture with explanation and critiquing components. These architectures not only predict personalized keyphrases for a user and item but also embed language-based feedback in the latent space that in turn modulates subsequent critiqued recommendations. We evaluate the proposed framework on two recommendation datasets containing user reviews. Empirical results show that our modified NCF approach not only provides a strong baseline recommender and high-quality personalized item keyphrase suggestions, but that it also properly suppresses items predicted to have a critiqued keyphrase. In summary, this paper provides a first step to unify deep recommendation and language-based feedback in what we hope to be a rich space for future research in deep critiquing for conversational recommendation.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Deep language-based critiquing for recommender systems\",\"authors\":\"Ga Wu, Kai Luo, S. Sanner, Harold Soh\",\"doi\":\"10.1145/3298689.3347009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Critiquing is a method for conversational recommendation that adapts recommendations in response to user preference feedback regarding item attributes. Historical critiquing methods were largely based on constraint- and utility-based methods for modifying recommendations w.r.t. these critiqued attributes. In this paper, we revisit the critiquing approach from the lens of deep learning based recommendation methods and language-based interaction. Concretely, we propose an end-to-end deep learning framework with two variants that extend the Neural Collaborative Filtering architecture with explanation and critiquing components. These architectures not only predict personalized keyphrases for a user and item but also embed language-based feedback in the latent space that in turn modulates subsequent critiqued recommendations. We evaluate the proposed framework on two recommendation datasets containing user reviews. Empirical results show that our modified NCF approach not only provides a strong baseline recommender and high-quality personalized item keyphrase suggestions, but that it also properly suppresses items predicted to have a critiqued keyphrase. In summary, this paper provides a first step to unify deep recommendation and language-based feedback in what we hope to be a rich space for future research in deep critiquing for conversational recommendation.\",\"PeriodicalId\":215384,\"journal\":{\"name\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3298689.3347009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3347009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

评论是会话推荐的一种方法,它根据用户对项目属性的偏好反馈来调整推荐。历史批评方法主要基于约束和基于效用的方法来修改建议,而不是这些被批评的属性。在本文中,我们从基于深度学习的推荐方法和基于语言的交互的角度重新审视了批评方法。具体来说,我们提出了一个端到端深度学习框架,它有两个变体,通过解释和批评组件扩展了神经协同过滤架构。这些体系结构不仅预测用户和项目的个性化关键字,而且还在潜在空间中嵌入基于语言的反馈,从而调节随后的批评建议。我们在两个包含用户评论的推荐数据集上评估了所提出的框架。实证结果表明,我们改进的NCF方法不仅提供了强大的基线推荐和高质量的个性化项目关键词建议,而且还适当地抑制了预测具有批评关键词的项目。总之,本文为统一深度推荐和基于语言的反馈提供了第一步,我们希望这将为对话推荐的深度评论的未来研究提供丰富的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep language-based critiquing for recommender systems
Critiquing is a method for conversational recommendation that adapts recommendations in response to user preference feedback regarding item attributes. Historical critiquing methods were largely based on constraint- and utility-based methods for modifying recommendations w.r.t. these critiqued attributes. In this paper, we revisit the critiquing approach from the lens of deep learning based recommendation methods and language-based interaction. Concretely, we propose an end-to-end deep learning framework with two variants that extend the Neural Collaborative Filtering architecture with explanation and critiquing components. These architectures not only predict personalized keyphrases for a user and item but also embed language-based feedback in the latent space that in turn modulates subsequent critiqued recommendations. We evaluate the proposed framework on two recommendation datasets containing user reviews. Empirical results show that our modified NCF approach not only provides a strong baseline recommender and high-quality personalized item keyphrase suggestions, but that it also properly suppresses items predicted to have a critiqued keyphrase. In summary, this paper provides a first step to unify deep recommendation and language-based feedback in what we hope to be a rich space for future research in deep critiquing for conversational recommendation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信