不确定点数据的绝对定向:一种统一方法

Y. Hel-Or, M. Werman
{"title":"不确定点数据的绝对定向:一种统一方法","authors":"Y. Hel-Or, M. Werman","doi":"10.1109/CVPR.1992.223224","DOIUrl":null,"url":null,"abstract":"A general and flexible method for fusing and integrating different 2D and 3D measurements for pose estimation is proposed. The 2D measured data are viewed as 3D data with infinite uncertainty in a particular direction. This representation unifies the two categories of the absolute orientation problem into a single problem that varies only in the uncertainty values associated with the measurements. With this paradigm a uniform mathematical formulation of the problem is obtained, and different kinds of measurements that can be fused to obtain a better solution. The method, which is implemented using Kalman filtering, is robust and easily parallelizable.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"381 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Absolute orientation from uncertain point data: a unified approach\",\"authors\":\"Y. Hel-Or, M. Werman\",\"doi\":\"10.1109/CVPR.1992.223224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A general and flexible method for fusing and integrating different 2D and 3D measurements for pose estimation is proposed. The 2D measured data are viewed as 3D data with infinite uncertainty in a particular direction. This representation unifies the two categories of the absolute orientation problem into a single problem that varies only in the uncertainty values associated with the measurements. With this paradigm a uniform mathematical formulation of the problem is obtained, and different kinds of measurements that can be fused to obtain a better solution. The method, which is implemented using Kalman filtering, is robust and easily parallelizable.<<ETX>>\",\"PeriodicalId\":325476,\"journal\":{\"name\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"volume\":\"381 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1992.223224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

提出了一种通用的、灵活的二维和三维测量融合和积分方法,用于姿态估计。二维测量数据在特定方向上被视为具有无限不确定性的三维数据。这种表示将绝对定向问题的两类问题统一为一个问题,该问题仅在与测量相关的不确定性值中变化。在此范式下,得到了问题的统一数学公式,并且可以将不同类型的测量结果融合以获得更好的解。该方法采用卡尔曼滤波实现,鲁棒性好,易于并行化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Absolute orientation from uncertain point data: a unified approach
A general and flexible method for fusing and integrating different 2D and 3D measurements for pose estimation is proposed. The 2D measured data are viewed as 3D data with infinite uncertainty in a particular direction. This representation unifies the two categories of the absolute orientation problem into a single problem that varies only in the uncertainty values associated with the measurements. With this paradigm a uniform mathematical formulation of the problem is obtained, and different kinds of measurements that can be fused to obtain a better solution. The method, which is implemented using Kalman filtering, is robust and easily parallelizable.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信