{"title":"iSBVR:基于切片体绘制的等表面辅助硬件加速技术","authors":"Daqing Xue, Caixia Zhang, R. Crawfis","doi":"10.2312/VG/VG05/207-215","DOIUrl":null,"url":null,"abstract":"In this paper, we examine the performance of the early z-culling feature on current high-end commodity graphics cards and present an isosurface-aided hardware acceleration algorithm for slice-based volume rendering (iSBVR) to maximize its utilization. We analyze the computational models for early z-culling of the texture based volume rendering. We demonstrate that the performance improves with two to four times speedup against an original straightforward SBVR on an ATI 9800pro display board. As volumetric shaders become increasingly complex, the advantages of fast z-culling will become even more pronounced.","PeriodicalId":443333,"journal":{"name":"Fourth International Workshop on Volume Graphics, 2005.","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"iSBVR: isosurface-AIDED hardware acceleration techniques for slice-based volume rendering\",\"authors\":\"Daqing Xue, Caixia Zhang, R. Crawfis\",\"doi\":\"10.2312/VG/VG05/207-215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we examine the performance of the early z-culling feature on current high-end commodity graphics cards and present an isosurface-aided hardware acceleration algorithm for slice-based volume rendering (iSBVR) to maximize its utilization. We analyze the computational models for early z-culling of the texture based volume rendering. We demonstrate that the performance improves with two to four times speedup against an original straightforward SBVR on an ATI 9800pro display board. As volumetric shaders become increasingly complex, the advantages of fast z-culling will become even more pronounced.\",\"PeriodicalId\":443333,\"journal\":{\"name\":\"Fourth International Workshop on Volume Graphics, 2005.\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Workshop on Volume Graphics, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/VG/VG05/207-215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Workshop on Volume Graphics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/VG/VG05/207-215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
iSBVR: isosurface-AIDED hardware acceleration techniques for slice-based volume rendering
In this paper, we examine the performance of the early z-culling feature on current high-end commodity graphics cards and present an isosurface-aided hardware acceleration algorithm for slice-based volume rendering (iSBVR) to maximize its utilization. We analyze the computational models for early z-culling of the texture based volume rendering. We demonstrate that the performance improves with two to four times speedup against an original straightforward SBVR on an ATI 9800pro display board. As volumetric shaders become increasingly complex, the advantages of fast z-culling will become even more pronounced.