基于LMR标注的汉语分词

Nianwen Xue, Libin Shen
{"title":"基于LMR标注的汉语分词","authors":"Nianwen Xue, Libin Shen","doi":"10.3115/1119250.1119278","DOIUrl":null,"url":null,"abstract":"In this paper we present Chinese word segmentation algorithms based on the so-called LMR tagging. Our LMR taggers are implemented with the Maximum Entropy Markov Model and we then use Transformation-Based Learning to combine the results of the two LMR taggers that scan the input in opposite directions. Our system achieves F-scores of 95.9% and 91.6% on the Academia Sinica corpus and the Hong Kong City University corpus respectively.","PeriodicalId":403123,"journal":{"name":"Workshop on Chinese Language Processing","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"151","resultStr":"{\"title\":\"Chinese Word Segmentation as LMR Tagging\",\"authors\":\"Nianwen Xue, Libin Shen\",\"doi\":\"10.3115/1119250.1119278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present Chinese word segmentation algorithms based on the so-called LMR tagging. Our LMR taggers are implemented with the Maximum Entropy Markov Model and we then use Transformation-Based Learning to combine the results of the two LMR taggers that scan the input in opposite directions. Our system achieves F-scores of 95.9% and 91.6% on the Academia Sinica corpus and the Hong Kong City University corpus respectively.\",\"PeriodicalId\":403123,\"journal\":{\"name\":\"Workshop on Chinese Language Processing\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"151\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Chinese Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1119250.1119278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Chinese Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1119250.1119278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 151

摘要

本文提出了一种基于LMR标注的中文分词算法。我们的LMR标记器是用最大熵马尔可夫模型实现的,然后我们使用基于转换的学习来组合两个LMR标记器的结果,这两个LMR标记器从相反的方向扫描输入。我们的系统在中央研究院语料库和香港城市大学语料库上分别获得95.9%和91.6%的f分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chinese Word Segmentation as LMR Tagging
In this paper we present Chinese word segmentation algorithms based on the so-called LMR tagging. Our LMR taggers are implemented with the Maximum Entropy Markov Model and we then use Transformation-Based Learning to combine the results of the two LMR taggers that scan the input in opposite directions. Our system achieves F-scores of 95.9% and 91.6% on the Academia Sinica corpus and the Hong Kong City University corpus respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信