走向通用的对抗性例子和防御

A. S. Rakin, Ye Wang, Shuchin Aeron, T. Koike-Akino, P. Moulin, K. Parsons
{"title":"走向通用的对抗性例子和防御","authors":"A. S. Rakin, Ye Wang, Shuchin Aeron, T. Koike-Akino, P. Moulin, K. Parsons","doi":"10.1109/ITW48936.2021.9611439","DOIUrl":null,"url":null,"abstract":"Adversarial examples have recently exposed the severe vulnerability of neural network models. However, most of the existing attacks require some form of target model information (i.e., weights/model inquiry/architecture) to improve the efficacy of the attack. We leverage the information-theoretic connections between robust learning and generalized rate-distortion theory to formulate a universal adversarial example (UAE) generation algorithm. Our algorithm trains an offline adversarial generator to minimize the mutual information between the label and perturbed data. At the inference phase, our UAE method can efficiently generate effective adversarial examples without high computation cost. These adversarial examples in turn allow for developing universal defenses through adversarial training. Our experiments demonstrate promising gains in improving the training efficiency of conventional adversarial training.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Universal Adversarial Examples and Defenses\",\"authors\":\"A. S. Rakin, Ye Wang, Shuchin Aeron, T. Koike-Akino, P. Moulin, K. Parsons\",\"doi\":\"10.1109/ITW48936.2021.9611439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adversarial examples have recently exposed the severe vulnerability of neural network models. However, most of the existing attacks require some form of target model information (i.e., weights/model inquiry/architecture) to improve the efficacy of the attack. We leverage the information-theoretic connections between robust learning and generalized rate-distortion theory to formulate a universal adversarial example (UAE) generation algorithm. Our algorithm trains an offline adversarial generator to minimize the mutual information between the label and perturbed data. At the inference phase, our UAE method can efficiently generate effective adversarial examples without high computation cost. These adversarial examples in turn allow for developing universal defenses through adversarial training. Our experiments demonstrate promising gains in improving the training efficiency of conventional adversarial training.\",\"PeriodicalId\":325229,\"journal\":{\"name\":\"2021 IEEE Information Theory Workshop (ITW)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW48936.2021.9611439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对抗性的例子最近暴露了神经网络模型的严重脆弱性。然而,大多数现有的攻击都需要某种形式的目标模型信息(即权重/模型查询/体系结构)来提高攻击的有效性。我们利用鲁棒学习和广义率失真理论之间的信息论联系来制定一个通用对抗示例(UAE)生成算法。我们的算法训练一个离线对抗生成器来最小化标签和扰动数据之间的互信息。在推理阶段,我们的方法可以高效地生成有效的对抗样例,且计算成本不高。这些对抗性的例子反过来又允许通过对抗性训练开发通用防御。我们的实验表明,在提高传统对抗性训练的训练效率方面有很大的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Universal Adversarial Examples and Defenses
Adversarial examples have recently exposed the severe vulnerability of neural network models. However, most of the existing attacks require some form of target model information (i.e., weights/model inquiry/architecture) to improve the efficacy of the attack. We leverage the information-theoretic connections between robust learning and generalized rate-distortion theory to formulate a universal adversarial example (UAE) generation algorithm. Our algorithm trains an offline adversarial generator to minimize the mutual information between the label and perturbed data. At the inference phase, our UAE method can efficiently generate effective adversarial examples without high computation cost. These adversarial examples in turn allow for developing universal defenses through adversarial training. Our experiments demonstrate promising gains in improving the training efficiency of conventional adversarial training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信