NDVI时间序列和马尔可夫链对模糊植被干旱类型变化的模拟

S. Ding, C. M. Rulinda, A. Stein, W. Bijker
{"title":"NDVI时间序列和马尔可夫链对模糊植被干旱类型变化的模拟","authors":"S. Ding, C. M. Rulinda, A. Stein, W. Bijker","doi":"10.1109/MULTI-TEMP.2011.6005083","DOIUrl":null,"url":null,"abstract":"The objective of this study is to explore the potential of using Markov chains to model the changes of vegetative drought classes. NOAA-AVHRR dekadal NDVI images and fuzzy functions are used to characterize the drought classes while capturing the gradual transition between them. The transition probabilities are estimated using the maximum class membership values at a location. The Markov transition probability matrix is then used to model the changes of vegetative drought classes at selected locations. Future vegetative drought classes are predicted using the estimated transition matrix, then compared with actual data. Twenty pixel locations clustered in four regions of the two main agricultural type in Kenya are selected to implement this approach. Half of the pixels are predicted correctly. 5 of them are predicted either one class higher or lower and 2 of them, two classes higher. We can conclude that Markov chains applied to fuzzy numbers have the potential to model the changes of of vegetative drought classes at a pixel, hence provide a benefit for early warning systems.","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"NDVI time series and Markov chains to model the change of fuzzy vegetative drought classes\",\"authors\":\"S. Ding, C. M. Rulinda, A. Stein, W. Bijker\",\"doi\":\"10.1109/MULTI-TEMP.2011.6005083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to explore the potential of using Markov chains to model the changes of vegetative drought classes. NOAA-AVHRR dekadal NDVI images and fuzzy functions are used to characterize the drought classes while capturing the gradual transition between them. The transition probabilities are estimated using the maximum class membership values at a location. The Markov transition probability matrix is then used to model the changes of vegetative drought classes at selected locations. Future vegetative drought classes are predicted using the estimated transition matrix, then compared with actual data. Twenty pixel locations clustered in four regions of the two main agricultural type in Kenya are selected to implement this approach. Half of the pixels are predicted correctly. 5 of them are predicted either one class higher or lower and 2 of them, two classes higher. We can conclude that Markov chains applied to fuzzy numbers have the potential to model the changes of of vegetative drought classes at a pixel, hence provide a benefit for early warning systems.\",\"PeriodicalId\":254778,\"journal\":{\"name\":\"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MULTI-TEMP.2011.6005083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究的目的是探索利用马尔可夫链来模拟植被干旱类型变化的潜力。利用NOAA-AVHRR的年代际NDVI图像和模糊函数来描述干旱类别,同时捕捉它们之间的逐渐过渡。使用某个位置的最大类隶属度值估计转移概率。然后利用马尔可夫转移概率矩阵对选定地点的植被干旱等级变化进行建模。利用估计的过渡矩阵预测未来的植被干旱等级,然后与实际数据进行比较。选择聚集在肯尼亚两种主要农业类型的四个地区的20个像素点来实施这种方法。一半的像素被正确预测。其中5个预测高或低一个等级,2个预测高两个等级。结果表明,将马尔可夫链应用于模糊数有可能在像素上模拟植被干旱等级的变化,从而为预警系统提供了有利条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NDVI time series and Markov chains to model the change of fuzzy vegetative drought classes
The objective of this study is to explore the potential of using Markov chains to model the changes of vegetative drought classes. NOAA-AVHRR dekadal NDVI images and fuzzy functions are used to characterize the drought classes while capturing the gradual transition between them. The transition probabilities are estimated using the maximum class membership values at a location. The Markov transition probability matrix is then used to model the changes of vegetative drought classes at selected locations. Future vegetative drought classes are predicted using the estimated transition matrix, then compared with actual data. Twenty pixel locations clustered in four regions of the two main agricultural type in Kenya are selected to implement this approach. Half of the pixels are predicted correctly. 5 of them are predicted either one class higher or lower and 2 of them, two classes higher. We can conclude that Markov chains applied to fuzzy numbers have the potential to model the changes of of vegetative drought classes at a pixel, hence provide a benefit for early warning systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信