{"title":"低温固化用正色调光定影聚酰亚胺","authors":"Daisaku Matsukawa, T. Enomoto, Kei Ono, M. Ohe","doi":"10.1109/ICSJ.2014.7009603","DOIUrl":null,"url":null,"abstract":"Photodefinable Polyimides (PI) and polybenz-oxazoles (PBO) which have been widely used for various electronic applications such as buffer coating, interlayer dielectric and protection layer usually need high temperature cure condition over 300 °C to complete the cyclization and achieve good film properties. In addition, PI and PBO are also utilized recently for re-distribution layer of wafer level package. In this application, lower temperature curability is strongly required in order to prevent the thermal damage of the semi-conductor device and the other packaging material. Then, to meet this requirement, we focused on pre-cyclized polyimide with phenolic hydroxyl groups since this polymer showed the good solubility to aqueous TMAH and there was no need to apply high temperature cure condition. As a result of our study, the positive-tone photodefinable material could be obtained by using DNQ and combination of epoxy cross-linker enabled to enhance the chemical and PCT resistance of the cured film made even at 170 °C. Furthermore, the adhesion to copper was improved probably due to secondary hydroxyl groups which were generated from reacted epoxide groups. In this report, we introduce our concept of novel photodefinable positive-tone polyimide for low temperature cure.","PeriodicalId":362502,"journal":{"name":"IEEE CPMT Symposium Japan 2014","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Positive-tone photodefinable polyimide for low temperature cure\",\"authors\":\"Daisaku Matsukawa, T. Enomoto, Kei Ono, M. Ohe\",\"doi\":\"10.1109/ICSJ.2014.7009603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photodefinable Polyimides (PI) and polybenz-oxazoles (PBO) which have been widely used for various electronic applications such as buffer coating, interlayer dielectric and protection layer usually need high temperature cure condition over 300 °C to complete the cyclization and achieve good film properties. In addition, PI and PBO are also utilized recently for re-distribution layer of wafer level package. In this application, lower temperature curability is strongly required in order to prevent the thermal damage of the semi-conductor device and the other packaging material. Then, to meet this requirement, we focused on pre-cyclized polyimide with phenolic hydroxyl groups since this polymer showed the good solubility to aqueous TMAH and there was no need to apply high temperature cure condition. As a result of our study, the positive-tone photodefinable material could be obtained by using DNQ and combination of epoxy cross-linker enabled to enhance the chemical and PCT resistance of the cured film made even at 170 °C. Furthermore, the adhesion to copper was improved probably due to secondary hydroxyl groups which were generated from reacted epoxide groups. In this report, we introduce our concept of novel photodefinable positive-tone polyimide for low temperature cure.\",\"PeriodicalId\":362502,\"journal\":{\"name\":\"IEEE CPMT Symposium Japan 2014\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE CPMT Symposium Japan 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSJ.2014.7009603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE CPMT Symposium Japan 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSJ.2014.7009603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Positive-tone photodefinable polyimide for low temperature cure
Photodefinable Polyimides (PI) and polybenz-oxazoles (PBO) which have been widely used for various electronic applications such as buffer coating, interlayer dielectric and protection layer usually need high temperature cure condition over 300 °C to complete the cyclization and achieve good film properties. In addition, PI and PBO are also utilized recently for re-distribution layer of wafer level package. In this application, lower temperature curability is strongly required in order to prevent the thermal damage of the semi-conductor device and the other packaging material. Then, to meet this requirement, we focused on pre-cyclized polyimide with phenolic hydroxyl groups since this polymer showed the good solubility to aqueous TMAH and there was no need to apply high temperature cure condition. As a result of our study, the positive-tone photodefinable material could be obtained by using DNQ and combination of epoxy cross-linker enabled to enhance the chemical and PCT resistance of the cured film made even at 170 °C. Furthermore, the adhesion to copper was improved probably due to secondary hydroxyl groups which were generated from reacted epoxide groups. In this report, we introduce our concept of novel photodefinable positive-tone polyimide for low temperature cure.