结合SIFT和区域SSDA的图像匹配

W. Qiu, Jian Zhao, Jie Liu
{"title":"结合SIFT和区域SSDA的图像匹配","authors":"W. Qiu, Jian Zhao, Jie Liu","doi":"10.1109/ICCECT.2012.78","DOIUrl":null,"url":null,"abstract":"Image matching is at the base of many computer vision problems, such as object recognition or image stitching. Standard SIFT provides poor performance when images under viewpoint change conditions and with similar corners. Hence, we propose a matching algorithm combine regional SSDA with simplified SIFT algorithm. We demonstrate through experiments that our algorithm yields better performance in images of viewpoint change and similar feature points. Besides, the simplified algorithm cut down about half the time was originally needed in our tested images.","PeriodicalId":153613,"journal":{"name":"2012 International Conference on Control Engineering and Communication Technology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Image Matching Combine SIFT with Regional SSDA\",\"authors\":\"W. Qiu, Jian Zhao, Jie Liu\",\"doi\":\"10.1109/ICCECT.2012.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image matching is at the base of many computer vision problems, such as object recognition or image stitching. Standard SIFT provides poor performance when images under viewpoint change conditions and with similar corners. Hence, we propose a matching algorithm combine regional SSDA with simplified SIFT algorithm. We demonstrate through experiments that our algorithm yields better performance in images of viewpoint change and similar feature points. Besides, the simplified algorithm cut down about half the time was originally needed in our tested images.\",\"PeriodicalId\":153613,\"journal\":{\"name\":\"2012 International Conference on Control Engineering and Communication Technology\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Control Engineering and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECT.2012.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Control Engineering and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECT.2012.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图像匹配是许多计算机视觉问题的基础,如物体识别或图像拼接。当图像在视点变化条件下和角点相似时,标准SIFT的性能较差。因此,我们提出了一种结合区域SSDA和简化SIFT算法的匹配算法。通过实验证明,该算法在视点变化和相似特征点的图像中具有较好的性能。此外,简化后的算法将我们测试图像所需的时间减少了大约一半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Matching Combine SIFT with Regional SSDA
Image matching is at the base of many computer vision problems, such as object recognition or image stitching. Standard SIFT provides poor performance when images under viewpoint change conditions and with similar corners. Hence, we propose a matching algorithm combine regional SSDA with simplified SIFT algorithm. We demonstrate through experiments that our algorithm yields better performance in images of viewpoint change and similar feature points. Besides, the simplified algorithm cut down about half the time was originally needed in our tested images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信