基于生成对抗网络的HEVC压缩视频视觉感知增强

Ting Wang, Jingbo He, Shuhua Xiong, Pradeep Karn, Xiaohai He
{"title":"基于生成对抗网络的HEVC压缩视频视觉感知增强","authors":"Ting Wang, Jingbo He, Shuhua Xiong, Pradeep Karn, Xiaohai He","doi":"10.1109/UCET51115.2020.9205459","DOIUrl":null,"url":null,"abstract":"The emergence of generative adversarial network (GAN) promotes the great progress of deep learning generation model. In this paper, generative adversarial network is used to remove the visual artifact of compressed video, and a visual perception enhancement algorithm for HEVC compressed video is proposed. Specifically, after HEVC compression, the reconstructed image is output by GAN generator. The output image can effectively guide the discriminator of GAN to approximate the mapping between the encoded frame and the original frame. The adversarial loss of the generator to keep learning this mapping, which not only improves the visual perception quality of compressed video, but also removes the artifact. Experimental results demonstrate the superiority of our GAN network over other methods in terms of both Perceptual Index and visual quality.","PeriodicalId":163493,"journal":{"name":"2020 International Conference on UK-China Emerging Technologies (UCET)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Visual Perception Enhancement for HEVC Compressed Video Using a Generative Adversarial Network\",\"authors\":\"Ting Wang, Jingbo He, Shuhua Xiong, Pradeep Karn, Xiaohai He\",\"doi\":\"10.1109/UCET51115.2020.9205459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of generative adversarial network (GAN) promotes the great progress of deep learning generation model. In this paper, generative adversarial network is used to remove the visual artifact of compressed video, and a visual perception enhancement algorithm for HEVC compressed video is proposed. Specifically, after HEVC compression, the reconstructed image is output by GAN generator. The output image can effectively guide the discriminator of GAN to approximate the mapping between the encoded frame and the original frame. The adversarial loss of the generator to keep learning this mapping, which not only improves the visual perception quality of compressed video, but also removes the artifact. Experimental results demonstrate the superiority of our GAN network over other methods in terms of both Perceptual Index and visual quality.\",\"PeriodicalId\":163493,\"journal\":{\"name\":\"2020 International Conference on UK-China Emerging Technologies (UCET)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on UK-China Emerging Technologies (UCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UCET51115.2020.9205459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on UK-China Emerging Technologies (UCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCET51115.2020.9205459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

生成对抗网络(GAN)的出现促进了深度学习生成模型的巨大发展。本文利用生成对抗网络去除压缩视频中的视觉伪影,提出了一种HEVC压缩视频的视觉感知增强算法。具体来说,经过HEVC压缩后的重构图像由GAN发生器输出。输出图像可以有效地引导GAN鉴别器逼近编码帧与原始帧之间的映射关系。利用生成器的对抗损失不断学习这种映射,既提高了压缩视频的视觉感知质量,又消除了伪影。实验结果表明,我们的GAN网络在感知指数和视觉质量方面都优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual Perception Enhancement for HEVC Compressed Video Using a Generative Adversarial Network
The emergence of generative adversarial network (GAN) promotes the great progress of deep learning generation model. In this paper, generative adversarial network is used to remove the visual artifact of compressed video, and a visual perception enhancement algorithm for HEVC compressed video is proposed. Specifically, after HEVC compression, the reconstructed image is output by GAN generator. The output image can effectively guide the discriminator of GAN to approximate the mapping between the encoded frame and the original frame. The adversarial loss of the generator to keep learning this mapping, which not only improves the visual perception quality of compressed video, but also removes the artifact. Experimental results demonstrate the superiority of our GAN network over other methods in terms of both Perceptual Index and visual quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信