Prashanth Ramadoss, Lorenzo Rapetti, Yeshasvi Tirupachuri, Riccardo Grieco, Gianluca Milani, Enrico Valli, Stefano Dafarra, Silvio Traversaro, D. Pucci
{"title":"基于动态逆运动学和接触辅助李群卡尔曼滤波的人体基础运动学估计","authors":"Prashanth Ramadoss, Lorenzo Rapetti, Yeshasvi Tirupachuri, Riccardo Grieco, Gianluca Milani, Enrico Valli, Stefano Dafarra, Silvio Traversaro, D. Pucci","doi":"10.1109/Humanoids53995.2022.10000199","DOIUrl":null,"url":null,"abstract":"Full body motion estimation of a human through wearable sensing technologies is challenging in the absence of position sensors since base kinematics is usually not directly measurable. This paper contributes to the development of a model-based floating base kinematics estimation algorithm using wearable distributed inertial and force-torque sensing. This is done by extending the existing dynamical optimization-based Inverse Kinematics (IK) approach for joint state estimation, in cascade, to include a center of pressure based contact detector and a contact-aided Kalman filter on Lie groups for floating base pose estimation. The proposed method is tested in an experimental scenario where a human equipped with a sensorized suit and shoes performs walking motions. The proposed method is demonstrated to obtain a reliable reconstruction of the whole-body human motion.","PeriodicalId":180816,"journal":{"name":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of Human Base Kinematics using Dynamical Inverse Kinematics and Contact-Aided Lie Group Kalman Filter\",\"authors\":\"Prashanth Ramadoss, Lorenzo Rapetti, Yeshasvi Tirupachuri, Riccardo Grieco, Gianluca Milani, Enrico Valli, Stefano Dafarra, Silvio Traversaro, D. Pucci\",\"doi\":\"10.1109/Humanoids53995.2022.10000199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Full body motion estimation of a human through wearable sensing technologies is challenging in the absence of position sensors since base kinematics is usually not directly measurable. This paper contributes to the development of a model-based floating base kinematics estimation algorithm using wearable distributed inertial and force-torque sensing. This is done by extending the existing dynamical optimization-based Inverse Kinematics (IK) approach for joint state estimation, in cascade, to include a center of pressure based contact detector and a contact-aided Kalman filter on Lie groups for floating base pose estimation. The proposed method is tested in an experimental scenario where a human equipped with a sensorized suit and shoes performs walking motions. The proposed method is demonstrated to obtain a reliable reconstruction of the whole-body human motion.\",\"PeriodicalId\":180816,\"journal\":{\"name\":\"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Humanoids53995.2022.10000199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids53995.2022.10000199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimation of Human Base Kinematics using Dynamical Inverse Kinematics and Contact-Aided Lie Group Kalman Filter
Full body motion estimation of a human through wearable sensing technologies is challenging in the absence of position sensors since base kinematics is usually not directly measurable. This paper contributes to the development of a model-based floating base kinematics estimation algorithm using wearable distributed inertial and force-torque sensing. This is done by extending the existing dynamical optimization-based Inverse Kinematics (IK) approach for joint state estimation, in cascade, to include a center of pressure based contact detector and a contact-aided Kalman filter on Lie groups for floating base pose estimation. The proposed method is tested in an experimental scenario where a human equipped with a sensorized suit and shoes performs walking motions. The proposed method is demonstrated to obtain a reliable reconstruction of the whole-body human motion.