传感器网络异常可视化

Qi Liao, Lei Shi, Yuan He, Rui Li, Zhongji Su, A. Striegel, Yunhao Liu
{"title":"传感器网络异常可视化","authors":"Qi Liao, Lei Shi, Yuan He, Rui Li, Zhongji Su, A. Striegel, Yunhao Liu","doi":"10.1145/2018436.2018521","DOIUrl":null,"url":null,"abstract":"Diagnosing a large-scale sensor network is a crucial but challenging task due to the spatiotemporally dynamic network behaviors of sensor nodes. In this demo, we present Sensor Anomaly Visualization Engine (SAVE), an integrated system that tackles the sensor network diagnosis problem using both visualization and anomaly detection analytics to guide the user quickly and accurately diagnose sensor network failures. Temporal expansion model, correlation graphs and dynamic projection views are proposed to effectively interpret the topological, correlational and dimensional sensor data dynamics and their anomalies. Through a real-world large-scale wireless sensor network deployment (GreenOrbs), we demonstrate that SAVE is able to help better locate the problem and further identify the root cause of major sensor network failures.","PeriodicalId":350796,"journal":{"name":"Proceedings of the ACM SIGCOMM 2011 conference","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Visualizing anomalies in sensor networks\",\"authors\":\"Qi Liao, Lei Shi, Yuan He, Rui Li, Zhongji Su, A. Striegel, Yunhao Liu\",\"doi\":\"10.1145/2018436.2018521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diagnosing a large-scale sensor network is a crucial but challenging task due to the spatiotemporally dynamic network behaviors of sensor nodes. In this demo, we present Sensor Anomaly Visualization Engine (SAVE), an integrated system that tackles the sensor network diagnosis problem using both visualization and anomaly detection analytics to guide the user quickly and accurately diagnose sensor network failures. Temporal expansion model, correlation graphs and dynamic projection views are proposed to effectively interpret the topological, correlational and dimensional sensor data dynamics and their anomalies. Through a real-world large-scale wireless sensor network deployment (GreenOrbs), we demonstrate that SAVE is able to help better locate the problem and further identify the root cause of major sensor network failures.\",\"PeriodicalId\":350796,\"journal\":{\"name\":\"Proceedings of the ACM SIGCOMM 2011 conference\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM SIGCOMM 2011 conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2018436.2018521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGCOMM 2011 conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2018436.2018521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于传感器节点的时空动态网络行为,大规模传感器网络的诊断是一项至关重要但具有挑战性的任务。在这个演示中,我们展示了传感器异常可视化引擎(SAVE),这是一个集成系统,它使用可视化和异常检测分析来解决传感器网络诊断问题,以指导用户快速准确地诊断传感器网络故障。提出了时间展开模型、相关图和动态投影图,有效地解释了拓扑、相关和量纲传感器数据的动态及其异常。通过真实世界的大规模无线传感器网络部署(GreenOrbs),我们证明了SAVE能够帮助更好地定位问题,并进一步确定主要传感器网络故障的根本原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing anomalies in sensor networks
Diagnosing a large-scale sensor network is a crucial but challenging task due to the spatiotemporally dynamic network behaviors of sensor nodes. In this demo, we present Sensor Anomaly Visualization Engine (SAVE), an integrated system that tackles the sensor network diagnosis problem using both visualization and anomaly detection analytics to guide the user quickly and accurately diagnose sensor network failures. Temporal expansion model, correlation graphs and dynamic projection views are proposed to effectively interpret the topological, correlational and dimensional sensor data dynamics and their anomalies. Through a real-world large-scale wireless sensor network deployment (GreenOrbs), we demonstrate that SAVE is able to help better locate the problem and further identify the root cause of major sensor network failures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信