使用HRV参数和机器学习技术的应力识别系统

Giorgos Giannakakis, K. Marias, M. Tsiknakis
{"title":"使用HRV参数和机器学习技术的应力识别系统","authors":"Giorgos Giannakakis, K. Marias, M. Tsiknakis","doi":"10.1109/ACIIW.2019.8925142","DOIUrl":null,"url":null,"abstract":"In this study, we investigate reliable heart rate variability (HRV) parameters in order to recognize stress. An experiment protocol was established including different stressors which correspond to a range of everyday life conditions. A personalized baseline was formulated for each participant in order to eliminate inter-subject variability and to normalize data providing a common reference for the whole dataset. The extracted HRV features were transformed accordingly using the pairwise transformation in order to take into account the personalized baseline of each phase in constructing the stress model. The most robust features were selected using the minimum Redundancy Maximum Relevance (mRMR) selection algorithm. The selected features fed machine learning systems achieving a classification accuracy of 84.4% using 10-fold cross-validation.","PeriodicalId":193568,"journal":{"name":"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"A stress recognition system using HRV parameters and machine learning techniques\",\"authors\":\"Giorgos Giannakakis, K. Marias, M. Tsiknakis\",\"doi\":\"10.1109/ACIIW.2019.8925142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigate reliable heart rate variability (HRV) parameters in order to recognize stress. An experiment protocol was established including different stressors which correspond to a range of everyday life conditions. A personalized baseline was formulated for each participant in order to eliminate inter-subject variability and to normalize data providing a common reference for the whole dataset. The extracted HRV features were transformed accordingly using the pairwise transformation in order to take into account the personalized baseline of each phase in constructing the stress model. The most robust features were selected using the minimum Redundancy Maximum Relevance (mRMR) selection algorithm. The selected features fed machine learning systems achieving a classification accuracy of 84.4% using 10-fold cross-validation.\",\"PeriodicalId\":193568,\"journal\":{\"name\":\"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIIW.2019.8925142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIW.2019.8925142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

在这项研究中,我们研究可靠的心率变异性(HRV)参数,以识别压力。建立了一个实验方案,包括不同的应激源,对应于一系列的日常生活条件。为每个参与者制定了个性化基线,以消除主体间的可变性,并使数据规范化,为整个数据集提供共同参考。对提取的HRV特征进行相应的两两变换,以便在构建应力模型时考虑到每个阶段的个性化基线。使用最小冗余最大相关性(mRMR)选择算法选择最鲁棒的特征。通过10倍交叉验证,选择的特征为机器学习系统提供了84.4%的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stress recognition system using HRV parameters and machine learning techniques
In this study, we investigate reliable heart rate variability (HRV) parameters in order to recognize stress. An experiment protocol was established including different stressors which correspond to a range of everyday life conditions. A personalized baseline was formulated for each participant in order to eliminate inter-subject variability and to normalize data providing a common reference for the whole dataset. The extracted HRV features were transformed accordingly using the pairwise transformation in order to take into account the personalized baseline of each phase in constructing the stress model. The most robust features were selected using the minimum Redundancy Maximum Relevance (mRMR) selection algorithm. The selected features fed machine learning systems achieving a classification accuracy of 84.4% using 10-fold cross-validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信