利用异构信息源中的交互网络改进推荐系统的基于内核的方法

HetRec '11 Pub Date : 2011-10-27 DOI:10.1145/2039320.2039322
Oluwasanmi Koyejo, Joydeep Ghosh
{"title":"利用异构信息源中的交互网络改进推荐系统的基于内核的方法","authors":"Oluwasanmi Koyejo, Joydeep Ghosh","doi":"10.1145/2039320.2039322","DOIUrl":null,"url":null,"abstract":"Pairwise interaction networks capture inter-user dependencies (e.g. social networks) and inter-item dependencies (e.g item categories) that provide insight into user and item behavior. It is often assumed that such interaction information is informative for preference prediction. This may not be the case, as the some of the observed interactions may not be correlated with the preferences, and their use may negatively impact performance by introducing undesired noise.\n We propose an approach for weighting each interaction, such that we can determine the importance of each interaction to the preference prediction task. We model the preferences using kernel matrix factorization; where the kernels capture the weighted effects of the interactions. Our approach is validated on Last.fm and Movielens datasets; which include multiple sources of explicit and implicit inter-user and inter-item interactions. Our experiments suggest that learning the most important interactions can improve recommendation performance when compared to the standard matrix factorization approach.","PeriodicalId":144030,"journal":{"name":"HetRec '11","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A kernel-based approach to exploiting interaction-networks in heterogeneous information sources for improved recommender systems\",\"authors\":\"Oluwasanmi Koyejo, Joydeep Ghosh\",\"doi\":\"10.1145/2039320.2039322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pairwise interaction networks capture inter-user dependencies (e.g. social networks) and inter-item dependencies (e.g item categories) that provide insight into user and item behavior. It is often assumed that such interaction information is informative for preference prediction. This may not be the case, as the some of the observed interactions may not be correlated with the preferences, and their use may negatively impact performance by introducing undesired noise.\\n We propose an approach for weighting each interaction, such that we can determine the importance of each interaction to the preference prediction task. We model the preferences using kernel matrix factorization; where the kernels capture the weighted effects of the interactions. Our approach is validated on Last.fm and Movielens datasets; which include multiple sources of explicit and implicit inter-user and inter-item interactions. Our experiments suggest that learning the most important interactions can improve recommendation performance when compared to the standard matrix factorization approach.\",\"PeriodicalId\":144030,\"journal\":{\"name\":\"HetRec '11\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HetRec '11\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2039320.2039322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HetRec '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2039320.2039322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

两两交互网络捕获用户间依赖关系(如社交网络)和项目间依赖关系(如项目类别),提供对用户和项目行为的洞察。通常假设这种相互作用信息对偏好预测具有信息性。情况可能并非如此,因为一些观察到的相互作用可能与偏好无关,并且它们的使用可能通过引入不希望的噪声而对性能产生负面影响。我们提出了一种加权每个交互的方法,这样我们就可以确定每个交互对偏好预测任务的重要性。我们使用核矩阵分解对偏好进行建模;其中核捕获相互作用的加权效应。我们的方法在Last上得到了验证。fm和Movielens数据集;它包括多个来源的显式和隐式的用户间和项目间交互。我们的实验表明,与标准矩阵分解方法相比,学习最重要的交互可以提高推荐性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A kernel-based approach to exploiting interaction-networks in heterogeneous information sources for improved recommender systems
Pairwise interaction networks capture inter-user dependencies (e.g. social networks) and inter-item dependencies (e.g item categories) that provide insight into user and item behavior. It is often assumed that such interaction information is informative for preference prediction. This may not be the case, as the some of the observed interactions may not be correlated with the preferences, and their use may negatively impact performance by introducing undesired noise. We propose an approach for weighting each interaction, such that we can determine the importance of each interaction to the preference prediction task. We model the preferences using kernel matrix factorization; where the kernels capture the weighted effects of the interactions. Our approach is validated on Last.fm and Movielens datasets; which include multiple sources of explicit and implicit inter-user and inter-item interactions. Our experiments suggest that learning the most important interactions can improve recommendation performance when compared to the standard matrix factorization approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信