{"title":"GPU聚类上对称密集矩阵的三对角化","authors":"I. Yamazaki, Tingxing Dong, S. Tomov, J. Dongarra","doi":"10.1109/IPDPSW.2013.265","DOIUrl":null,"url":null,"abstract":"Symmetric dense Eigen value problems arise in many scientific and engineering simulations. In this paper, we use GPUs to accelerate its main computational kernel, the tridiagonalization of a dense symmetric matrix on a distributed multicore architecture. We then study the performance of this hybrid message-passing/shared-memory/GPU-computing paradigm on up to 16 compute nodes, each of which consists of 16 Intel Sandy Bridge processors and three NVIDIA GPUs. These studies show that such a hybrid paradigm can exploit the underlying hardware architecture and obtain significant speedups over a flat message-passing paradigm can, and they demonstrate a potential of efficiently solving large-scale Eigen value problems on a GPU cluster. Furthermore, these studies may provide insights on the general effects of such hybrid paradigms on emerging high-performance computers.","PeriodicalId":234552,"journal":{"name":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tridiagonalization of a Symmetric Dense Matrix on a GPU Cluster\",\"authors\":\"I. Yamazaki, Tingxing Dong, S. Tomov, J. Dongarra\",\"doi\":\"10.1109/IPDPSW.2013.265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symmetric dense Eigen value problems arise in many scientific and engineering simulations. In this paper, we use GPUs to accelerate its main computational kernel, the tridiagonalization of a dense symmetric matrix on a distributed multicore architecture. We then study the performance of this hybrid message-passing/shared-memory/GPU-computing paradigm on up to 16 compute nodes, each of which consists of 16 Intel Sandy Bridge processors and three NVIDIA GPUs. These studies show that such a hybrid paradigm can exploit the underlying hardware architecture and obtain significant speedups over a flat message-passing paradigm can, and they demonstrate a potential of efficiently solving large-scale Eigen value problems on a GPU cluster. Furthermore, these studies may provide insights on the general effects of such hybrid paradigms on emerging high-performance computers.\",\"PeriodicalId\":234552,\"journal\":{\"name\":\"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2013.265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2013.265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tridiagonalization of a Symmetric Dense Matrix on a GPU Cluster
Symmetric dense Eigen value problems arise in many scientific and engineering simulations. In this paper, we use GPUs to accelerate its main computational kernel, the tridiagonalization of a dense symmetric matrix on a distributed multicore architecture. We then study the performance of this hybrid message-passing/shared-memory/GPU-computing paradigm on up to 16 compute nodes, each of which consists of 16 Intel Sandy Bridge processors and three NVIDIA GPUs. These studies show that such a hybrid paradigm can exploit the underlying hardware architecture and obtain significant speedups over a flat message-passing paradigm can, and they demonstrate a potential of efficiently solving large-scale Eigen value problems on a GPU cluster. Furthermore, these studies may provide insights on the general effects of such hybrid paradigms on emerging high-performance computers.