GPU聚类上对称密集矩阵的三对角化

I. Yamazaki, Tingxing Dong, S. Tomov, J. Dongarra
{"title":"GPU聚类上对称密集矩阵的三对角化","authors":"I. Yamazaki, Tingxing Dong, S. Tomov, J. Dongarra","doi":"10.1109/IPDPSW.2013.265","DOIUrl":null,"url":null,"abstract":"Symmetric dense Eigen value problems arise in many scientific and engineering simulations. In this paper, we use GPUs to accelerate its main computational kernel, the tridiagonalization of a dense symmetric matrix on a distributed multicore architecture. We then study the performance of this hybrid message-passing/shared-memory/GPU-computing paradigm on up to 16 compute nodes, each of which consists of 16 Intel Sandy Bridge processors and three NVIDIA GPUs. These studies show that such a hybrid paradigm can exploit the underlying hardware architecture and obtain significant speedups over a flat message-passing paradigm can, and they demonstrate a potential of efficiently solving large-scale Eigen value problems on a GPU cluster. Furthermore, these studies may provide insights on the general effects of such hybrid paradigms on emerging high-performance computers.","PeriodicalId":234552,"journal":{"name":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tridiagonalization of a Symmetric Dense Matrix on a GPU Cluster\",\"authors\":\"I. Yamazaki, Tingxing Dong, S. Tomov, J. Dongarra\",\"doi\":\"10.1109/IPDPSW.2013.265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symmetric dense Eigen value problems arise in many scientific and engineering simulations. In this paper, we use GPUs to accelerate its main computational kernel, the tridiagonalization of a dense symmetric matrix on a distributed multicore architecture. We then study the performance of this hybrid message-passing/shared-memory/GPU-computing paradigm on up to 16 compute nodes, each of which consists of 16 Intel Sandy Bridge processors and three NVIDIA GPUs. These studies show that such a hybrid paradigm can exploit the underlying hardware architecture and obtain significant speedups over a flat message-passing paradigm can, and they demonstrate a potential of efficiently solving large-scale Eigen value problems on a GPU cluster. Furthermore, these studies may provide insights on the general effects of such hybrid paradigms on emerging high-performance computers.\",\"PeriodicalId\":234552,\"journal\":{\"name\":\"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2013.265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2013.265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对称密集本征值问题在许多科学和工程模拟中经常出现。在本文中,我们使用gpu来加速其主要的计算内核,密集对称矩阵在分布式多核架构上的三对角化。然后,我们研究了这种混合消息传递/共享内存/ gpu计算范式在多达16个计算节点上的性能,每个计算节点由16个英特尔Sandy Bridge处理器和3个NVIDIA gpu组成。这些研究表明,这种混合范式可以利用底层硬件架构,并获得比平面消息传递范式更大的速度,并且它们展示了在GPU集群上有效解决大规模特征值问题的潜力。此外,这些研究可能会对这种混合范式对新兴高性能计算机的一般影响提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tridiagonalization of a Symmetric Dense Matrix on a GPU Cluster
Symmetric dense Eigen value problems arise in many scientific and engineering simulations. In this paper, we use GPUs to accelerate its main computational kernel, the tridiagonalization of a dense symmetric matrix on a distributed multicore architecture. We then study the performance of this hybrid message-passing/shared-memory/GPU-computing paradigm on up to 16 compute nodes, each of which consists of 16 Intel Sandy Bridge processors and three NVIDIA GPUs. These studies show that such a hybrid paradigm can exploit the underlying hardware architecture and obtain significant speedups over a flat message-passing paradigm can, and they demonstrate a potential of efficiently solving large-scale Eigen value problems on a GPU cluster. Furthermore, these studies may provide insights on the general effects of such hybrid paradigms on emerging high-performance computers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信