鲁棒数字图像稳定使用特征跟踪

Chuntao Wang, Jin-Hyung Kim, Keun-Yung Byun, S. Ko
{"title":"鲁棒数字图像稳定使用特征跟踪","authors":"Chuntao Wang, Jin-Hyung Kim, Keun-Yung Byun, S. Ko","doi":"10.1109/ICCE.2009.5012257","DOIUrl":null,"url":null,"abstract":"This paper presents a new robust digital image stabilization (DIS) algorithm which uses well-tracked feature points to estimate the motion between two consecutive frames. The motion prediction with the Kalman filter is incorporated into the Kanade-Lucas-Tomasi (KLT) tracker to further speed up the tracking process. A new scheme is proposed to adaptively update the Kalman filter. Simulation results show that the proposed algorithm can speed up the tracking process and obtain more stabilized performance.","PeriodicalId":154986,"journal":{"name":"2009 Digest of Technical Papers International Conference on Consumer Electronics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust digital image stabilization using feature tracking\",\"authors\":\"Chuntao Wang, Jin-Hyung Kim, Keun-Yung Byun, S. Ko\",\"doi\":\"10.1109/ICCE.2009.5012257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new robust digital image stabilization (DIS) algorithm which uses well-tracked feature points to estimate the motion between two consecutive frames. The motion prediction with the Kalman filter is incorporated into the Kanade-Lucas-Tomasi (KLT) tracker to further speed up the tracking process. A new scheme is proposed to adaptively update the Kalman filter. Simulation results show that the proposed algorithm can speed up the tracking process and obtain more stabilized performance.\",\"PeriodicalId\":154986,\"journal\":{\"name\":\"2009 Digest of Technical Papers International Conference on Consumer Electronics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Digest of Technical Papers International Conference on Consumer Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE.2009.5012257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digest of Technical Papers International Conference on Consumer Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2009.5012257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种新的鲁棒数字稳像算法,该算法利用跟踪良好的特征点来估计连续两帧之间的运动。卡尔曼滤波的运动预测被整合到Kanade-Lucas-Tomasi (KLT)跟踪器中,进一步加快了跟踪过程。提出了一种自适应更新卡尔曼滤波器的新方案。仿真结果表明,该算法可以加快跟踪速度,获得更稳定的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust digital image stabilization using feature tracking
This paper presents a new robust digital image stabilization (DIS) algorithm which uses well-tracked feature points to estimate the motion between two consecutive frames. The motion prediction with the Kalman filter is incorporated into the Kanade-Lucas-Tomasi (KLT) tracker to further speed up the tracking process. A new scheme is proposed to adaptively update the Kalman filter. Simulation results show that the proposed algorithm can speed up the tracking process and obtain more stabilized performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信