基于软件的功率计的实验比较:以CPU和GPU为重点

M. Jay, Vladimir Ostapenco, L. Lefèvre, D. Trystram, Anne-Cécile Orgerie, Benjamin Fichel
{"title":"基于软件的功率计的实验比较:以CPU和GPU为重点","authors":"M. Jay, Vladimir Ostapenco, L. Lefèvre, D. Trystram, Anne-Cécile Orgerie, Benjamin Fichel","doi":"10.1109/CCGrid57682.2023.00020","DOIUrl":null,"url":null,"abstract":"The global energy demand for digital activities is constantly growing. Computing nodes and cloud services are at the heart of these activities. Understanding their energy consumption is an important step towards reducing it. On one hand, physical power meters are very accurate in measuring energy but they are expensive, difficult to deploy on a large scale, and are not able to provide measurements at the service level. On the other hand, power models and vendor-specific internal interfaces are already available or can be implemented on existing systems. Plenty of tools, called software-based power meters, have been developed around the concepts of power models and internal interfaces, in order to report the power consumption at levels ranging from the whole computing node to applications and services. However, we have found that it can be difficult to choose the right tool for a specific need. In this work, we qualitatively and experimentally compare several software-based power meters able to deal with CPU or GPU-based infrastructures. For this purpose, we evaluate them against high-precision physical power meters while executing various intensive workloads. We extend this empirical study to highlight the strengths and limitations of each software-based power meter.","PeriodicalId":363806,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An experimental comparison of software-based power meters: focus on CPU and GPU\",\"authors\":\"M. Jay, Vladimir Ostapenco, L. Lefèvre, D. Trystram, Anne-Cécile Orgerie, Benjamin Fichel\",\"doi\":\"10.1109/CCGrid57682.2023.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global energy demand for digital activities is constantly growing. Computing nodes and cloud services are at the heart of these activities. Understanding their energy consumption is an important step towards reducing it. On one hand, physical power meters are very accurate in measuring energy but they are expensive, difficult to deploy on a large scale, and are not able to provide measurements at the service level. On the other hand, power models and vendor-specific internal interfaces are already available or can be implemented on existing systems. Plenty of tools, called software-based power meters, have been developed around the concepts of power models and internal interfaces, in order to report the power consumption at levels ranging from the whole computing node to applications and services. However, we have found that it can be difficult to choose the right tool for a specific need. In this work, we qualitatively and experimentally compare several software-based power meters able to deal with CPU or GPU-based infrastructures. For this purpose, we evaluate them against high-precision physical power meters while executing various intensive workloads. We extend this empirical study to highlight the strengths and limitations of each software-based power meter.\",\"PeriodicalId\":363806,\"journal\":{\"name\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid57682.2023.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid57682.2023.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

数字活动的全球能源需求不断增长。计算节点和云服务是这些活动的核心。了解他们的能源消耗是减少能源消耗的重要一步。一方面,物理电能表在测量能量方面非常准确,但它们价格昂贵,难以大规模部署,并且无法提供服务级别的测量。另一方面,电源模型和供应商特定的内部接口已经可用,或者可以在现有系统上实现。围绕功耗模型和内部接口的概念,已经开发了许多称为基于软件的功耗表的工具,以便报告从整个计算节点到应用程序和服务的各个级别的功耗。然而,我们发现为特定需求选择合适的工具是很困难的。在这项工作中,我们定性地和实验地比较了几种能够处理基于CPU或gpu的基础架构的基于软件的功率计。为此,我们在执行各种密集工作负载时,根据高精度物理功率表对它们进行评估。我们扩展了这一实证研究,以突出每个基于软件的功率计的优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An experimental comparison of software-based power meters: focus on CPU and GPU
The global energy demand for digital activities is constantly growing. Computing nodes and cloud services are at the heart of these activities. Understanding their energy consumption is an important step towards reducing it. On one hand, physical power meters are very accurate in measuring energy but they are expensive, difficult to deploy on a large scale, and are not able to provide measurements at the service level. On the other hand, power models and vendor-specific internal interfaces are already available or can be implemented on existing systems. Plenty of tools, called software-based power meters, have been developed around the concepts of power models and internal interfaces, in order to report the power consumption at levels ranging from the whole computing node to applications and services. However, we have found that it can be difficult to choose the right tool for a specific need. In this work, we qualitatively and experimentally compare several software-based power meters able to deal with CPU or GPU-based infrastructures. For this purpose, we evaluate them against high-precision physical power meters while executing various intensive workloads. We extend this empirical study to highlight the strengths and limitations of each software-based power meter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信