使用光无线链路降低数据中心的能耗

E. Rosenkrantz, S. Arnon
{"title":"使用光无线链路降低数据中心的能耗","authors":"E. Rosenkrantz, S. Arnon","doi":"10.1109/WiSEE.2016.7877306","DOIUrl":null,"url":null,"abstract":"Data Center (DC) servers consume a huge amount of energy. However, a part of this energy (cooling and information technology devices) can be saved by shutting down racks containing idle servers. This can be achieved by rerouting workloads from partially loaded racks, and thus allowing additional racks to switch into idle mode. Workload rerouting requires additional wired links or by optical wireless communication (OWC) links, which can be deployed on top the existing network. In comparison to classic wired infrastructure, OWC deployment and maintenance is faster and simpler, and it offers dynamic configuration of the network. Moreover, OWC can be used to augment the performance of virtualization techniques, which allow load balancing. In this paper we developed a mathematical model and an optimization algorithm along with numerical simulations, which evaluate the energy consumption in DCs. Results show that for a uniform distributed load between 24–100% and a 100% deployment of OWC links, 33% of the IT and cooling energy consumed can be saved.","PeriodicalId":177862,"journal":{"name":"2016 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Reducing energy consumption of data centers using optical wireless links\",\"authors\":\"E. Rosenkrantz, S. Arnon\",\"doi\":\"10.1109/WiSEE.2016.7877306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data Center (DC) servers consume a huge amount of energy. However, a part of this energy (cooling and information technology devices) can be saved by shutting down racks containing idle servers. This can be achieved by rerouting workloads from partially loaded racks, and thus allowing additional racks to switch into idle mode. Workload rerouting requires additional wired links or by optical wireless communication (OWC) links, which can be deployed on top the existing network. In comparison to classic wired infrastructure, OWC deployment and maintenance is faster and simpler, and it offers dynamic configuration of the network. Moreover, OWC can be used to augment the performance of virtualization techniques, which allow load balancing. In this paper we developed a mathematical model and an optimization algorithm along with numerical simulations, which evaluate the energy consumption in DCs. Results show that for a uniform distributed load between 24–100% and a 100% deployment of OWC links, 33% of the IT and cooling energy consumed can be saved.\",\"PeriodicalId\":177862,\"journal\":{\"name\":\"2016 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WiSEE.2016.7877306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WiSEE.2016.7877306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

数据中心(DC)服务器消耗大量的能源。但是,通过关闭包含空闲服务器的机架可以节省一部分能源(冷却和信息技术设备)。这可以通过从部分负载的机架重新路由工作负载来实现,从而允许其他机架切换到空闲模式。工作负载重路由需要额外的有线链路或光无线通信(OWC)链路,这些链路可以部署在现有网络的顶部。与传统的有线基础设施相比,OWC的部署和维护更快、更简单,并且提供了网络的动态配置。此外,OWC可用于增强虚拟化技术的性能,从而实现负载平衡。在本文中,我们建立了一个数学模型和优化算法,并进行了数值模拟,以评估DCs的能耗。结果表明,在24-100%负载均匀分布和OWC链路100%部署的情况下,可节省33%的IT和冷却能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing energy consumption of data centers using optical wireless links
Data Center (DC) servers consume a huge amount of energy. However, a part of this energy (cooling and information technology devices) can be saved by shutting down racks containing idle servers. This can be achieved by rerouting workloads from partially loaded racks, and thus allowing additional racks to switch into idle mode. Workload rerouting requires additional wired links or by optical wireless communication (OWC) links, which can be deployed on top the existing network. In comparison to classic wired infrastructure, OWC deployment and maintenance is faster and simpler, and it offers dynamic configuration of the network. Moreover, OWC can be used to augment the performance of virtualization techniques, which allow load balancing. In this paper we developed a mathematical model and an optimization algorithm along with numerical simulations, which evaluate the energy consumption in DCs. Results show that for a uniform distributed load between 24–100% and a 100% deployment of OWC links, 33% of the IT and cooling energy consumed can be saved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信