边缘上的GraphBLAS:匿名高性能网络流量流

Michael Jones, J. Kepner, Daniel Andersen, A. Buluç, C. Byun, K. Claffy, Tim Davis, W. Arcand, Jonathan Bernays, David Bestor, William Bergeron, V. Gadepally, Micheal Houle, M. Hubbell, Hayden Jananthan, Anna Klein, C. Meiners, Lauren Milechin, J. Mullen, Sandeep Pisharody, Andrew Prout, A. Reuther, Antonio Rosa, S. Samsi, Jon Sreekanth, Douglas Stetson, Charles Yee, P. Michaleas
{"title":"边缘上的GraphBLAS:匿名高性能网络流量流","authors":"Michael Jones, J. Kepner, Daniel Andersen, A. Buluç, C. Byun, K. Claffy, Tim Davis, W. Arcand, Jonathan Bernays, David Bestor, William Bergeron, V. Gadepally, Micheal Houle, M. Hubbell, Hayden Jananthan, Anna Klein, C. Meiners, Lauren Milechin, J. Mullen, Sandeep Pisharody, Andrew Prout, A. Reuther, Antonio Rosa, S. Samsi, Jon Sreekanth, Douglas Stetson, Charles Yee, P. Michaleas","doi":"10.1109/HPEC55821.2022.9926332","DOIUrl":null,"url":null,"abstract":"Long range detection is a cornerstone of defense in many operating domains (land, sea, undersea, air, space,…,). In the cyber domain, long range detection requires the analysis of significant network traffic from a variety of observatories and outposts. Construction of anonymized hypersparse traffic matrices on edge network devices can be a key enabler by providing significant data compression in a rapidly analyzable format that protects privacy. GraphBLAS is ideally suited for both constructing and analyzing anonymized hypersparse traffic matrices. The performance of GraphBLAS on an Accolade Technologies edge network device is demonstrated on a near worse case traffic scenario using a continuous stream of CAIDA Telescope darknet packets. The performance for varying numbers of traffic buffers, threads, and processor cores is explored. Anonymized hypersparse traffic matrices can be constructed at a rate of over 50,000,000 packets per second; exceeding a typical 400 Gigabit network link. This performance demonstrates that anonymized hypersparse traffic matrices are readily computable on edge network devices with minimal compute resources and can be a viable data product for such devices.","PeriodicalId":200071,"journal":{"name":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"GraphBLAS on the Edge: Anonymized High Performance Streaming of Network Traffic\",\"authors\":\"Michael Jones, J. Kepner, Daniel Andersen, A. Buluç, C. Byun, K. Claffy, Tim Davis, W. Arcand, Jonathan Bernays, David Bestor, William Bergeron, V. Gadepally, Micheal Houle, M. Hubbell, Hayden Jananthan, Anna Klein, C. Meiners, Lauren Milechin, J. Mullen, Sandeep Pisharody, Andrew Prout, A. Reuther, Antonio Rosa, S. Samsi, Jon Sreekanth, Douglas Stetson, Charles Yee, P. Michaleas\",\"doi\":\"10.1109/HPEC55821.2022.9926332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long range detection is a cornerstone of defense in many operating domains (land, sea, undersea, air, space,…,). In the cyber domain, long range detection requires the analysis of significant network traffic from a variety of observatories and outposts. Construction of anonymized hypersparse traffic matrices on edge network devices can be a key enabler by providing significant data compression in a rapidly analyzable format that protects privacy. GraphBLAS is ideally suited for both constructing and analyzing anonymized hypersparse traffic matrices. The performance of GraphBLAS on an Accolade Technologies edge network device is demonstrated on a near worse case traffic scenario using a continuous stream of CAIDA Telescope darknet packets. The performance for varying numbers of traffic buffers, threads, and processor cores is explored. Anonymized hypersparse traffic matrices can be constructed at a rate of over 50,000,000 packets per second; exceeding a typical 400 Gigabit network link. This performance demonstrates that anonymized hypersparse traffic matrices are readily computable on edge network devices with minimal compute resources and can be a viable data product for such devices.\",\"PeriodicalId\":200071,\"journal\":{\"name\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC55821.2022.9926332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC55821.2022.9926332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

远程探测是许多作战领域(陆地、海洋、海底、空中、太空……)防御的基石。在网络领域,远程探测需要分析来自各种观测站和前哨的重要网络流量。在边缘网络设备上构建匿名超稀疏流量矩阵可以通过以快速可分析的格式提供重要的数据压缩来保护隐私,从而成为关键的推动因素。GraphBLAS非常适合构建和分析匿名超稀疏流量矩阵。GraphBLAS在Accolade Technologies边缘网络设备上的性能在使用CAIDA望远镜暗网数据包连续流的近乎糟糕的情况下进行了演示。研究了不同数量的流量缓冲区、线程和处理器内核的性能。匿名超稀疏流量矩阵可以以每秒超过50,000,000个数据包的速率构建;超过400gb的网络链路。这种性能表明,匿名超稀疏流量矩阵很容易在边缘网络设备上以最小的计算资源进行计算,并且可以成为此类设备的可行数据产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GraphBLAS on the Edge: Anonymized High Performance Streaming of Network Traffic
Long range detection is a cornerstone of defense in many operating domains (land, sea, undersea, air, space,…,). In the cyber domain, long range detection requires the analysis of significant network traffic from a variety of observatories and outposts. Construction of anonymized hypersparse traffic matrices on edge network devices can be a key enabler by providing significant data compression in a rapidly analyzable format that protects privacy. GraphBLAS is ideally suited for both constructing and analyzing anonymized hypersparse traffic matrices. The performance of GraphBLAS on an Accolade Technologies edge network device is demonstrated on a near worse case traffic scenario using a continuous stream of CAIDA Telescope darknet packets. The performance for varying numbers of traffic buffers, threads, and processor cores is explored. Anonymized hypersparse traffic matrices can be constructed at a rate of over 50,000,000 packets per second; exceeding a typical 400 Gigabit network link. This performance demonstrates that anonymized hypersparse traffic matrices are readily computable on edge network devices with minimal compute resources and can be a viable data product for such devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信