基于深度学习和人工智能的皮肤癌检测:深度特征融合的综合模型

Ahmed Abdelaziz, A. N. Mahmoud
{"title":"基于深度学习和人工智能的皮肤癌检测:深度特征融合的综合模型","authors":"Ahmed Abdelaziz, A. N. Mahmoud","doi":"10.54216/fpa.080201","DOIUrl":null,"url":null,"abstract":"Among the most frequent forms of cancer, skin cancer accounts for hundreds of thousands of fatalities annually throughout the globe. It shows up as excessive cell proliferation on the skin. The likelihood of a successful recovery is greatly enhanced by an early diagnosis. More than that, it might reduce the need for or the frequency of chemical, radiological, or surgical treatments. As a result, savings on healthcare expenses will be possible. Dermoscopy, which examines the size, form, and color features of skin lesions, is the first step in the process of detecting skin cancer and is followed by sample and lab testing to confirm any suspicious lesions. Deep learning AI has allowed for significant progress in image-based diagnostics in recent years. Deep neural networks known as convolutional neural networks (CNNs or ConvNets) are essentially an extended form of multi-layer perceptrons. In visual imaging challenges, CNNs have shown the best accuracy. The purpose of this research is to create a CNN model for the early identification of skin cancer. The backend of the CNN classification model will be built using Keras and Tensorflow in Python. Different network topologies, such as Convolutional layers, Dropout layers, Pooling layers, and Dense layers, are explored and tried out throughout the model's development and validation phases. Transfer Learning methods will also be included in the model to facilitate early convergence. The dataset gathered from the ISIC challenge archives will be used to both tests and train the model.","PeriodicalId":269527,"journal":{"name":"Fusion: Practice and Applications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skin Cancer Detection Using Deep Learning and Artificial Intelligence: Incorporated model of deep features fusion\",\"authors\":\"Ahmed Abdelaziz, A. N. Mahmoud\",\"doi\":\"10.54216/fpa.080201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the most frequent forms of cancer, skin cancer accounts for hundreds of thousands of fatalities annually throughout the globe. It shows up as excessive cell proliferation on the skin. The likelihood of a successful recovery is greatly enhanced by an early diagnosis. More than that, it might reduce the need for or the frequency of chemical, radiological, or surgical treatments. As a result, savings on healthcare expenses will be possible. Dermoscopy, which examines the size, form, and color features of skin lesions, is the first step in the process of detecting skin cancer and is followed by sample and lab testing to confirm any suspicious lesions. Deep learning AI has allowed for significant progress in image-based diagnostics in recent years. Deep neural networks known as convolutional neural networks (CNNs or ConvNets) are essentially an extended form of multi-layer perceptrons. In visual imaging challenges, CNNs have shown the best accuracy. The purpose of this research is to create a CNN model for the early identification of skin cancer. The backend of the CNN classification model will be built using Keras and Tensorflow in Python. Different network topologies, such as Convolutional layers, Dropout layers, Pooling layers, and Dense layers, are explored and tried out throughout the model's development and validation phases. Transfer Learning methods will also be included in the model to facilitate early convergence. The dataset gathered from the ISIC challenge archives will be used to both tests and train the model.\",\"PeriodicalId\":269527,\"journal\":{\"name\":\"Fusion: Practice and Applications\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion: Practice and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/fpa.080201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion: Practice and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/fpa.080201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在最常见的癌症形式中,皮肤癌每年在全球造成数十万人死亡。它表现为皮肤上过度的细胞增殖。早期诊断可大大提高成功康复的可能性。更重要的是,它可能会减少对化学、放射或手术治疗的需求或频率。因此,节省医疗费用将是可能的。皮肤镜检查是检查皮肤病变的大小、形状和颜色特征,是发现皮肤癌的第一步,然后是样品和实验室检查,以确认任何可疑的病变。近年来,深度学习人工智能在基于图像的诊断方面取得了重大进展。深度神经网络称为卷积神经网络(cnn或ConvNets),本质上是多层感知器的扩展形式。在视觉成像挑战中,cnn表现出了最好的准确性。本研究的目的是创建一个用于皮肤癌早期识别的CNN模型。CNN分类模型的后端将在Python中使用Keras和Tensorflow构建。在整个模型的开发和验证阶段,探索和尝试了不同的网络拓扑,如卷积层、Dropout层、池化层和Dense层。迁移学习方法也将包括在模型中,以促进早期收敛。从ISIC挑战档案中收集的数据集将用于测试和训练模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skin Cancer Detection Using Deep Learning and Artificial Intelligence: Incorporated model of deep features fusion
Among the most frequent forms of cancer, skin cancer accounts for hundreds of thousands of fatalities annually throughout the globe. It shows up as excessive cell proliferation on the skin. The likelihood of a successful recovery is greatly enhanced by an early diagnosis. More than that, it might reduce the need for or the frequency of chemical, radiological, or surgical treatments. As a result, savings on healthcare expenses will be possible. Dermoscopy, which examines the size, form, and color features of skin lesions, is the first step in the process of detecting skin cancer and is followed by sample and lab testing to confirm any suspicious lesions. Deep learning AI has allowed for significant progress in image-based diagnostics in recent years. Deep neural networks known as convolutional neural networks (CNNs or ConvNets) are essentially an extended form of multi-layer perceptrons. In visual imaging challenges, CNNs have shown the best accuracy. The purpose of this research is to create a CNN model for the early identification of skin cancer. The backend of the CNN classification model will be built using Keras and Tensorflow in Python. Different network topologies, such as Convolutional layers, Dropout layers, Pooling layers, and Dense layers, are explored and tried out throughout the model's development and validation phases. Transfer Learning methods will also be included in the model to facilitate early convergence. The dataset gathered from the ISIC challenge archives will be used to both tests and train the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信