{"title":"阿贝尔曲面和双椭圆曲面上的Seshadri常数。势值和下界","authors":"Thomas Bauer, L. Farnik","doi":"10.1090/proc/15893","DOIUrl":null,"url":null,"abstract":"In this note we contribute to the study of Seshadri constants on abelian and bielliptic surfaces. We specifically focus on bounds that hold on all such surfaces, depending only on the self-intersection of the ample line bundle under consideration. Our result improves previous bounds and it provides rational numbers as bounds, which are potential Seshadri constants.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seshadri constants on abelian and bielliptic surfaces–Potential values and lower bounds\",\"authors\":\"Thomas Bauer, L. Farnik\",\"doi\":\"10.1090/proc/15893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we contribute to the study of Seshadri constants on abelian and bielliptic surfaces. We specifically focus on bounds that hold on all such surfaces, depending only on the self-intersection of the ample line bundle under consideration. Our result improves previous bounds and it provides rational numbers as bounds, which are potential Seshadri constants.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Seshadri constants on abelian and bielliptic surfaces–Potential values and lower bounds
In this note we contribute to the study of Seshadri constants on abelian and bielliptic surfaces. We specifically focus on bounds that hold on all such surfaces, depending only on the self-intersection of the ample line bundle under consideration. Our result improves previous bounds and it provides rational numbers as bounds, which are potential Seshadri constants.