一种时空反向传播的双层记忆脉冲神经网络

Yaozhong Zhang, Mingxuan Jiang, Xiaoping Wang, Zhigang Zeng
{"title":"一种时空反向传播的双层记忆脉冲神经网络","authors":"Yaozhong Zhang, Mingxuan Jiang, Xiaoping Wang, Zhigang Zeng","doi":"10.1109/icaci55529.2022.9837606","DOIUrl":null,"url":null,"abstract":"In this paper, a novel two-layer memristive spiking neural network (MSNN) with spatio-temporal backpropagation (STBP) algorithm is proposed. The MSNN is composed of a memristive crossbar array, ten leaky integrate-and-fire (LIF) neurons and a winner-take-all (WTA) module. The memristive crossbar array with one memristor (1M) synapse performs the multiplication and accumulation without additional storage units. LIF neurons accumulate input current and fire spikes. WTA module ensures that only one neuron fires for one input pattern. The MSNN consumes a little power because there are no amplifiers or digital CMOS elements in the circuit. In order to train the memristive conductance, the LIF model is discretized and the gradients are propagated by the STBP algorithm. Furthermore, we perform a 6 × 5 black and white image classification based on the MSNN in PSPICE. Results verify that the MSNN realizes high recognition rates even under severe random noise and stuck-at faults","PeriodicalId":412347,"journal":{"name":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Two-Layer Memristive Spiking Neural Network with Spatio-Temporal Backpropagation\",\"authors\":\"Yaozhong Zhang, Mingxuan Jiang, Xiaoping Wang, Zhigang Zeng\",\"doi\":\"10.1109/icaci55529.2022.9837606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel two-layer memristive spiking neural network (MSNN) with spatio-temporal backpropagation (STBP) algorithm is proposed. The MSNN is composed of a memristive crossbar array, ten leaky integrate-and-fire (LIF) neurons and a winner-take-all (WTA) module. The memristive crossbar array with one memristor (1M) synapse performs the multiplication and accumulation without additional storage units. LIF neurons accumulate input current and fire spikes. WTA module ensures that only one neuron fires for one input pattern. The MSNN consumes a little power because there are no amplifiers or digital CMOS elements in the circuit. In order to train the memristive conductance, the LIF model is discretized and the gradients are propagated by the STBP algorithm. Furthermore, we perform a 6 × 5 black and white image classification based on the MSNN in PSPICE. Results verify that the MSNN realizes high recognition rates even under severe random noise and stuck-at faults\",\"PeriodicalId\":412347,\"journal\":{\"name\":\"2022 14th International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icaci55529.2022.9837606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaci55529.2022.9837606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种具有时空反向传播(STBP)算法的双层记忆脉冲神经网络(MSNN)。MSNN由一个忆阻交叉棒阵列、10个泄漏集成点火(LIF)神经元和一个赢者通吃(WTA)模块组成。具有一个忆阻器(1M)突触的忆阻交叉棒阵列无需额外的存储单元即可执行乘法和累加。LIF神经元积累输入电流和放电尖峰。WTA模块确保一个输入模式只触发一个神经元。由于电路中没有放大器或数字CMOS元件,因此MSNN消耗很少的功率。为了训练记忆电导,对LIF模型进行离散化,并采用STBP算法对梯度进行传播。此外,我们在PSPICE中基于MSNN进行了6 × 5的黑白图像分类。结果表明,即使在严重的随机噪声和卡滞故障下,MSNN也能实现较高的识别率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Two-Layer Memristive Spiking Neural Network with Spatio-Temporal Backpropagation
In this paper, a novel two-layer memristive spiking neural network (MSNN) with spatio-temporal backpropagation (STBP) algorithm is proposed. The MSNN is composed of a memristive crossbar array, ten leaky integrate-and-fire (LIF) neurons and a winner-take-all (WTA) module. The memristive crossbar array with one memristor (1M) synapse performs the multiplication and accumulation without additional storage units. LIF neurons accumulate input current and fire spikes. WTA module ensures that only one neuron fires for one input pattern. The MSNN consumes a little power because there are no amplifiers or digital CMOS elements in the circuit. In order to train the memristive conductance, the LIF model is discretized and the gradients are propagated by the STBP algorithm. Furthermore, we perform a 6 × 5 black and white image classification based on the MSNN in PSPICE. Results verify that the MSNN realizes high recognition rates even under severe random noise and stuck-at faults
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信