{"title":"用于高效性能分析的多级自适应执行跟踪","authors":"Mohammed Adib Khan, Naser Ezzati-Jivan","doi":"10.1109/SERA57763.2023.10197790","DOIUrl":null,"url":null,"abstract":"Troubleshooting system performance issues is a challenging task that requires a deep understanding of various factors that may impact system performance. This process involves analyzing trace logs from the kernel and user space using tools such as ftrace, strace, DTrace, or LTTng. However, pre-set tracing instrumentation can lead to missing important data where not enough components of the system include observability coverage. Also, having too much coverage may result in unnecessary noise in the data, making it extremely difficult to debug. This paper proposes an adaptive instrumentation technique for execution tracing, which dynamically makes decisions not only for which components to trace but also when to trace, thus reducing the risk of missing important data related to the performance problem and increasing the accuracy of debugging by reducing unwanted noises. Our case study results show that the proposed method is capable of handling tracing instrumentation dynamically for both kernel and application levels while maintaining a low overhead.","PeriodicalId":211080,"journal":{"name":"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-level Adaptive Execution Tracing for Efficient Performance Analysis\",\"authors\":\"Mohammed Adib Khan, Naser Ezzati-Jivan\",\"doi\":\"10.1109/SERA57763.2023.10197790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Troubleshooting system performance issues is a challenging task that requires a deep understanding of various factors that may impact system performance. This process involves analyzing trace logs from the kernel and user space using tools such as ftrace, strace, DTrace, or LTTng. However, pre-set tracing instrumentation can lead to missing important data where not enough components of the system include observability coverage. Also, having too much coverage may result in unnecessary noise in the data, making it extremely difficult to debug. This paper proposes an adaptive instrumentation technique for execution tracing, which dynamically makes decisions not only for which components to trace but also when to trace, thus reducing the risk of missing important data related to the performance problem and increasing the accuracy of debugging by reducing unwanted noises. Our case study results show that the proposed method is capable of handling tracing instrumentation dynamically for both kernel and application levels while maintaining a low overhead.\",\"PeriodicalId\":211080,\"journal\":{\"name\":\"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERA57763.2023.10197790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERA57763.2023.10197790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-level Adaptive Execution Tracing for Efficient Performance Analysis
Troubleshooting system performance issues is a challenging task that requires a deep understanding of various factors that may impact system performance. This process involves analyzing trace logs from the kernel and user space using tools such as ftrace, strace, DTrace, or LTTng. However, pre-set tracing instrumentation can lead to missing important data where not enough components of the system include observability coverage. Also, having too much coverage may result in unnecessary noise in the data, making it extremely difficult to debug. This paper proposes an adaptive instrumentation technique for execution tracing, which dynamically makes decisions not only for which components to trace but also when to trace, thus reducing the risk of missing important data related to the performance problem and increasing the accuracy of debugging by reducing unwanted noises. Our case study results show that the proposed method is capable of handling tracing instrumentation dynamically for both kernel and application levels while maintaining a low overhead.