用于特征选择的贝叶斯最高评分对

Emre Arslan, U. Braga-Neto
{"title":"用于特征选择的贝叶斯最高评分对","authors":"Emre Arslan, U. Braga-Neto","doi":"10.1109/ACSSC.2017.8335365","DOIUrl":null,"url":null,"abstract":"We propose a novel feature selection approach based on the Bayesian Top Scoring Pairs (BTSP) method. We compare its performance against well-known feature selection methods, under SVM, k-NN and NB classification rules, by means of an extensive numerical experiment using real gene-expression data sets. Results demonstrate the promise of the BTSP feature selection approach in the analysis of high-dimensional biological data.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian top scoring pairs for feature selection\",\"authors\":\"Emre Arslan, U. Braga-Neto\",\"doi\":\"10.1109/ACSSC.2017.8335365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel feature selection approach based on the Bayesian Top Scoring Pairs (BTSP) method. We compare its performance against well-known feature selection methods, under SVM, k-NN and NB classification rules, by means of an extensive numerical experiment using real gene-expression data sets. Results demonstrate the promise of the BTSP feature selection approach in the analysis of high-dimensional biological data.\",\"PeriodicalId\":296208,\"journal\":{\"name\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2017.8335365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于贝叶斯最高评分对(BTSP)方法的特征选择方法。我们通过使用真实基因表达数据集的大量数值实验,将其与已知的SVM、k-NN和NB分类规则下的特征选择方法的性能进行了比较。结果证明了BTSP特征选择方法在高维生物数据分析中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian top scoring pairs for feature selection
We propose a novel feature selection approach based on the Bayesian Top Scoring Pairs (BTSP) method. We compare its performance against well-known feature selection methods, under SVM, k-NN and NB classification rules, by means of an extensive numerical experiment using real gene-expression data sets. Results demonstrate the promise of the BTSP feature selection approach in the analysis of high-dimensional biological data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信