基于深度强化学习算法的无人潜航器路径规划

Yu Wang, Zhenzhong Chu, Yongli Hu
{"title":"基于深度强化学习算法的无人潜航器路径规划","authors":"Yu Wang, Zhenzhong Chu, Yongli Hu","doi":"10.1109/ICARM58088.2023.10218902","DOIUrl":null,"url":null,"abstract":"This paper implemented path planning for unmanned underwater vehicle (UUV) using deep reinforcement learning (DRL)algorithms with the UUV Simulator. We used three different algorithms, including twin delayed deep deterministic policy gradient (TD3), Soft Actor-Critic (SAC), and Proximal Policy Optimization (PPO). By conducting multiple experiments in a simulation environment and evaluating their results, we found that all three algorithms have good performance and robustness, and each has its own advantages in different test cases. The research results of this paper can provide some reference and guidance for UUV path planning.","PeriodicalId":220013,"journal":{"name":"2023 International Conference on Advanced Robotics and Mechatronics (ICARM)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path Planning of Unmanned Underwater Vehicles Based on Deep Reinforcement Learning Algorithm\",\"authors\":\"Yu Wang, Zhenzhong Chu, Yongli Hu\",\"doi\":\"10.1109/ICARM58088.2023.10218902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper implemented path planning for unmanned underwater vehicle (UUV) using deep reinforcement learning (DRL)algorithms with the UUV Simulator. We used three different algorithms, including twin delayed deep deterministic policy gradient (TD3), Soft Actor-Critic (SAC), and Proximal Policy Optimization (PPO). By conducting multiple experiments in a simulation environment and evaluating their results, we found that all three algorithms have good performance and robustness, and each has its own advantages in different test cases. The research results of this paper can provide some reference and guidance for UUV path planning.\",\"PeriodicalId\":220013,\"journal\":{\"name\":\"2023 International Conference on Advanced Robotics and Mechatronics (ICARM)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Advanced Robotics and Mechatronics (ICARM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARM58088.2023.10218902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advanced Robotics and Mechatronics (ICARM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARM58088.2023.10218902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用深度强化学习(DRL)算法,结合无人潜航器模拟器实现了无人潜航器的路径规划。我们使用了三种不同的算法,包括双延迟深度确定性策略梯度(TD3)、软行为者批评家(SAC)和近端策略优化(PPO)。通过在仿真环境中进行多次实验并对结果进行评估,我们发现这三种算法都具有良好的性能和鲁棒性,并且在不同的测试用例中各有优势。本文的研究成果可为UUV路径规划提供一定的参考和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path Planning of Unmanned Underwater Vehicles Based on Deep Reinforcement Learning Algorithm
This paper implemented path planning for unmanned underwater vehicle (UUV) using deep reinforcement learning (DRL)algorithms with the UUV Simulator. We used three different algorithms, including twin delayed deep deterministic policy gradient (TD3), Soft Actor-Critic (SAC), and Proximal Policy Optimization (PPO). By conducting multiple experiments in a simulation environment and evaluating their results, we found that all three algorithms have good performance and robustness, and each has its own advantages in different test cases. The research results of this paper can provide some reference and guidance for UUV path planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信