考虑交通拥堵的电力系统风险评估

Hongping Wang, Yiping Fang, E. Zio
{"title":"考虑交通拥堵的电力系统风险评估","authors":"Hongping Wang, Yiping Fang, E. Zio","doi":"10.1109/ICSRS.2018.8688718","DOIUrl":null,"url":null,"abstract":"With the increasing penetration of electric vehicles in the transportation system, more and more interactions appear between the transportation and power systems. This requires considering the impact of disturbances in the electrified transportation system onto the stability of the power system. This paper addresses this issue by proposing a method based on a cell transmission model (CTM) of the electrified transportation system and an alternative current (AC) model of the power system. Specifically, CTM is used to simulate the dynamic realtime traffic under congestion disturbances and evaluate the charging demands in the areas of the electrified transportation system. The charging demands are input to the AC model of the power system to calculate the fluctuations in power flow distributions. The proposed method can simulate the dynamic interactions between the electrified transportation system and the power system, and quantitatively measure the impacts of traffic disturbances on the stability of the power system. A numerical example is used to illustrate the proposed method.","PeriodicalId":166131,"journal":{"name":"2018 3rd International Conference on System Reliability and Safety (ICSRS)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risk Assessment of Electrical Power Systems Considering Traffic Congestion\",\"authors\":\"Hongping Wang, Yiping Fang, E. Zio\",\"doi\":\"10.1109/ICSRS.2018.8688718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing penetration of electric vehicles in the transportation system, more and more interactions appear between the transportation and power systems. This requires considering the impact of disturbances in the electrified transportation system onto the stability of the power system. This paper addresses this issue by proposing a method based on a cell transmission model (CTM) of the electrified transportation system and an alternative current (AC) model of the power system. Specifically, CTM is used to simulate the dynamic realtime traffic under congestion disturbances and evaluate the charging demands in the areas of the electrified transportation system. The charging demands are input to the AC model of the power system to calculate the fluctuations in power flow distributions. The proposed method can simulate the dynamic interactions between the electrified transportation system and the power system, and quantitatively measure the impacts of traffic disturbances on the stability of the power system. A numerical example is used to illustrate the proposed method.\",\"PeriodicalId\":166131,\"journal\":{\"name\":\"2018 3rd International Conference on System Reliability and Safety (ICSRS)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on System Reliability and Safety (ICSRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSRS.2018.8688718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on System Reliability and Safety (ICSRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSRS.2018.8688718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着电动汽车在交通系统中的日益普及,交通与电力系统之间的互动越来越多。这就需要考虑电气化运输系统中的扰动对电力系统稳定性的影响。本文提出了一种基于电气化交通系统的细胞传输模型(CTM)和电力系统的交流(AC)模型的方法来解决这一问题。具体而言,利用CTM模型模拟拥堵干扰下的动态实时交通,评估电气化交通系统各区域的充电需求。将充电需求输入到电力系统的交流模型中,计算潮流分布的波动。该方法可以模拟电气化交通系统与电力系统之间的动态相互作用,定量测量交通扰动对电力系统稳定性的影响。最后以数值算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Risk Assessment of Electrical Power Systems Considering Traffic Congestion
With the increasing penetration of electric vehicles in the transportation system, more and more interactions appear between the transportation and power systems. This requires considering the impact of disturbances in the electrified transportation system onto the stability of the power system. This paper addresses this issue by proposing a method based on a cell transmission model (CTM) of the electrified transportation system and an alternative current (AC) model of the power system. Specifically, CTM is used to simulate the dynamic realtime traffic under congestion disturbances and evaluate the charging demands in the areas of the electrified transportation system. The charging demands are input to the AC model of the power system to calculate the fluctuations in power flow distributions. The proposed method can simulate the dynamic interactions between the electrified transportation system and the power system, and quantitatively measure the impacts of traffic disturbances on the stability of the power system. A numerical example is used to illustrate the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信