基于机器学习的有源配电网故障类型识别

B. Sun, Hengxu Zhang, Fang Shi
{"title":"基于机器学习的有源配电网故障类型识别","authors":"B. Sun, Hengxu Zhang, Fang Shi","doi":"10.1109/ITNEC.2019.8729054","DOIUrl":null,"url":null,"abstract":"To realize the intelligent of the distribution network, it is necessary to identify the fault type accurately. This paper presents the fault type identification method based on machine learning in active distribution networks. The process of machine learning is divided into four steps: data preparation, data preprocessing, feature extraction and model training. When preparing data, a method of generating fault scenarios in the batch of simulation experiments is presented. The IEEE34 Bus System is built in PSCAD to complete the data preparation for machine learning. Variation multiples of voltage and current are extracted as the features to describe the fault type. Various machine learning models are trained by cross-validation method to get the accuracy of identification. The application of decision tree in fault type identification is presented in the form of a tree diagram. The result of fault type identification is shown by the confusion matrix of the decision tree. All the test results show that the proposed fault identifiers can identify all kinds of fault types in the distribution network.","PeriodicalId":202966,"journal":{"name":"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Machine Learning Based Fault Type Identification In the Active Distribution Network\",\"authors\":\"B. Sun, Hengxu Zhang, Fang Shi\",\"doi\":\"10.1109/ITNEC.2019.8729054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To realize the intelligent of the distribution network, it is necessary to identify the fault type accurately. This paper presents the fault type identification method based on machine learning in active distribution networks. The process of machine learning is divided into four steps: data preparation, data preprocessing, feature extraction and model training. When preparing data, a method of generating fault scenarios in the batch of simulation experiments is presented. The IEEE34 Bus System is built in PSCAD to complete the data preparation for machine learning. Variation multiples of voltage and current are extracted as the features to describe the fault type. Various machine learning models are trained by cross-validation method to get the accuracy of identification. The application of decision tree in fault type identification is presented in the form of a tree diagram. The result of fault type identification is shown by the confusion matrix of the decision tree. All the test results show that the proposed fault identifiers can identify all kinds of fault types in the distribution network.\",\"PeriodicalId\":202966,\"journal\":{\"name\":\"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNEC.2019.8729054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNEC.2019.8729054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了实现配电网的智能化,必须准确地识别故障类型。提出了一种基于机器学习的有源配电网故障类型识别方法。机器学习的过程分为数据准备、数据预处理、特征提取和模型训练四个步骤。在数据准备过程中,提出了一种在批量仿真实验中生成故障场景的方法。在PSCAD中构建IEEE34总线系统,完成机器学习的数据准备。提取电压和电流的变化倍数作为描述故障类型的特征。通过交叉验证方法训练各种机器学习模型,以获得识别的准确性。以树形图的形式介绍了决策树在故障类型识别中的应用。故障类型识别结果用决策树的混淆矩阵表示。试验结果表明,所提出的故障识别方法能够识别配电网中各种类型的故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Based Fault Type Identification In the Active Distribution Network
To realize the intelligent of the distribution network, it is necessary to identify the fault type accurately. This paper presents the fault type identification method based on machine learning in active distribution networks. The process of machine learning is divided into four steps: data preparation, data preprocessing, feature extraction and model training. When preparing data, a method of generating fault scenarios in the batch of simulation experiments is presented. The IEEE34 Bus System is built in PSCAD to complete the data preparation for machine learning. Variation multiples of voltage and current are extracted as the features to describe the fault type. Various machine learning models are trained by cross-validation method to get the accuracy of identification. The application of decision tree in fault type identification is presented in the form of a tree diagram. The result of fault type identification is shown by the confusion matrix of the decision tree. All the test results show that the proposed fault identifiers can identify all kinds of fault types in the distribution network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信