基于吉布斯抽样的贝叶斯服务需求估计

Weikun Wang, G. Casale
{"title":"基于吉布斯抽样的贝叶斯服务需求估计","authors":"Weikun Wang, G. Casale","doi":"10.1109/mascots.2013.78","DOIUrl":null,"url":null,"abstract":"Performance modelling of web applications involves the task of estimating service demands of requests at physical resources, such as CPUs. In this paper, we propose a service demand estimation algorithm based on a Markov Chain Monte Carlo (MCMC) technique, Gibbs sampling. Our methodology is widely applicable as it requires only queue length samples at each resource, which are simple to measure. Additionally, since we use a Bayesian approach, our method can use prior information on the distribution of parameters, a feature not always available with existing demand estimation approaches. The main challenge of Gibbs sampling is to efficiently evaluate the conditional expression required to sample from the posterior distribution of the demands. This expression is shown to be the equilibrium solution of a multiclass closed queueing network. We define a novel approximation to efficiently obtain the normalising constant to make the cost of its evaluation acceptable for MCMC applications. Experimental evaluation based on simulation data with different model sizes demonstrates the effectiveness of Gibbs sampling for service demand estimation.","PeriodicalId":385538,"journal":{"name":"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Bayesian Service Demand Estimation Using Gibbs Sampling\",\"authors\":\"Weikun Wang, G. Casale\",\"doi\":\"10.1109/mascots.2013.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance modelling of web applications involves the task of estimating service demands of requests at physical resources, such as CPUs. In this paper, we propose a service demand estimation algorithm based on a Markov Chain Monte Carlo (MCMC) technique, Gibbs sampling. Our methodology is widely applicable as it requires only queue length samples at each resource, which are simple to measure. Additionally, since we use a Bayesian approach, our method can use prior information on the distribution of parameters, a feature not always available with existing demand estimation approaches. The main challenge of Gibbs sampling is to efficiently evaluate the conditional expression required to sample from the posterior distribution of the demands. This expression is shown to be the equilibrium solution of a multiclass closed queueing network. We define a novel approximation to efficiently obtain the normalising constant to make the cost of its evaluation acceptable for MCMC applications. Experimental evaluation based on simulation data with different model sizes demonstrates the effectiveness of Gibbs sampling for service demand estimation.\",\"PeriodicalId\":385538,\"journal\":{\"name\":\"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mascots.2013.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mascots.2013.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

web应用程序的性能建模涉及估计物理资源(如cpu)上请求的服务需求的任务。本文提出了一种基于马尔可夫链蒙特卡罗(MCMC)技术的服务需求估计算法——吉布斯抽样。我们的方法广泛适用,因为它只需要每个资源上的队列长度样本,这很容易测量。此外,由于我们使用贝叶斯方法,我们的方法可以使用参数分布的先验信息,这是现有需求估计方法并不总是可用的特征。吉布斯抽样的主要挑战是有效地评估从需求的后验分布中抽样所需的条件表达式。该表达式被证明是一类多类封闭排队网络的平衡解。我们定义了一个新的近似值来有效地获得归一化常数,使其评估的成本在MCMC应用中可以接受。基于不同模型大小的仿真数据的实验评估证明了Gibbs抽样对服务需求估计的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Service Demand Estimation Using Gibbs Sampling
Performance modelling of web applications involves the task of estimating service demands of requests at physical resources, such as CPUs. In this paper, we propose a service demand estimation algorithm based on a Markov Chain Monte Carlo (MCMC) technique, Gibbs sampling. Our methodology is widely applicable as it requires only queue length samples at each resource, which are simple to measure. Additionally, since we use a Bayesian approach, our method can use prior information on the distribution of parameters, a feature not always available with existing demand estimation approaches. The main challenge of Gibbs sampling is to efficiently evaluate the conditional expression required to sample from the posterior distribution of the demands. This expression is shown to be the equilibrium solution of a multiclass closed queueing network. We define a novel approximation to efficiently obtain the normalising constant to make the cost of its evaluation acceptable for MCMC applications. Experimental evaluation based on simulation data with different model sizes demonstrates the effectiveness of Gibbs sampling for service demand estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信