WalDis:挖掘动态图中的判别模式

Karel Vaculík, L. Popelínský
{"title":"WalDis:挖掘动态图中的判别模式","authors":"Karel Vaculík, L. Popelínský","doi":"10.1145/3216122.3216172","DOIUrl":null,"url":null,"abstract":"Real-world networks typically evolve through time, which means there are various events occurring, such as edge additions or attribute changes. In order to understand the events, one must be able to discriminate between different events. Existing approaches typically discriminate whole graphs, which are, in addition, mostly static. We propose a new algorithm WalDis for mining discriminate patterns of events in dynamic graphs. This algorithm uses sampling by random walks and greedy approaches in order to keep the performance high. Furthermore, it does not require the time to be discretized as other algorithms commonly do. We have evaluated the algorithm on three real-world graph datasets.","PeriodicalId":422509,"journal":{"name":"Proceedings of the 22nd International Database Engineering & Applications Symposium","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"WalDis: Mining Discriminative Patterns within Dynamic Graphs\",\"authors\":\"Karel Vaculík, L. Popelínský\",\"doi\":\"10.1145/3216122.3216172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-world networks typically evolve through time, which means there are various events occurring, such as edge additions or attribute changes. In order to understand the events, one must be able to discriminate between different events. Existing approaches typically discriminate whole graphs, which are, in addition, mostly static. We propose a new algorithm WalDis for mining discriminate patterns of events in dynamic graphs. This algorithm uses sampling by random walks and greedy approaches in order to keep the performance high. Furthermore, it does not require the time to be discretized as other algorithms commonly do. We have evaluated the algorithm on three real-world graph datasets.\",\"PeriodicalId\":422509,\"journal\":{\"name\":\"Proceedings of the 22nd International Database Engineering & Applications Symposium\",\"volume\":\"192 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd International Database Engineering & Applications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3216122.3216172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Database Engineering & Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3216122.3216172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

现实世界的网络通常会随着时间的推移而进化,这意味着会发生各种各样的事件,比如边缘的增加或属性的改变。为了理解事件,人们必须能够区分不同的事件。现有的方法通常区分整个图,另外,这些图大多是静态的。提出了一种新的算法WalDis,用于挖掘动态图中事件的区别模式。该算法采用随机漫步抽样和贪心方法来保持较高的性能。此外,它不像其他算法那样需要时间进行离散化。我们已经在三个真实世界的图形数据集上评估了该算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WalDis: Mining Discriminative Patterns within Dynamic Graphs
Real-world networks typically evolve through time, which means there are various events occurring, such as edge additions or attribute changes. In order to understand the events, one must be able to discriminate between different events. Existing approaches typically discriminate whole graphs, which are, in addition, mostly static. We propose a new algorithm WalDis for mining discriminate patterns of events in dynamic graphs. This algorithm uses sampling by random walks and greedy approaches in order to keep the performance high. Furthermore, it does not require the time to be discretized as other algorithms commonly do. We have evaluated the algorithm on three real-world graph datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信