基于概率和进化算法的sdd变量重排序

Mitchell A. Thornton, J. P. Williams, Rolf Drechsler, Nicole Drechsler, D. M. Wessels
{"title":"基于概率和进化算法的sdd变量重排序","authors":"Mitchell A. Thornton, J. P. Williams, Rolf Drechsler, Nicole Drechsler, D. M. Wessels","doi":"10.1109/PACRIM.1999.799556","DOIUrl":null,"url":null,"abstract":"Modern CAD tools must represent large Boolean functions compactly in order to obtain reasonable runtimes for synthesis and verification. The shared binary decision diagram (SBDD) with negative edge attributes can represent many functions in a compact form if a proper variable ordering is used. In this work we describe a technique for reordering the variables in an SBDD to reduce the size of the data structure. A common heuristic for the variable ordering problem is to group variables together that have similar characteristics. We use this heuristic to formulate a technique for the reordering problem using probability based metrics. Our results indicate that this technique outperforms sifting with comparable runtimes. Furthermore, the method is robust in that the final results independent of the initial structure of the SBDD.","PeriodicalId":176763,"journal":{"name":"1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM 1999). Conference Proceedings (Cat. No.99CH36368)","volume":"368 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"SBDD variable reordering based on probabilistic and evolutionary algorithms\",\"authors\":\"Mitchell A. Thornton, J. P. Williams, Rolf Drechsler, Nicole Drechsler, D. M. Wessels\",\"doi\":\"10.1109/PACRIM.1999.799556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern CAD tools must represent large Boolean functions compactly in order to obtain reasonable runtimes for synthesis and verification. The shared binary decision diagram (SBDD) with negative edge attributes can represent many functions in a compact form if a proper variable ordering is used. In this work we describe a technique for reordering the variables in an SBDD to reduce the size of the data structure. A common heuristic for the variable ordering problem is to group variables together that have similar characteristics. We use this heuristic to formulate a technique for the reordering problem using probability based metrics. Our results indicate that this technique outperforms sifting with comparable runtimes. Furthermore, the method is robust in that the final results independent of the initial structure of the SBDD.\",\"PeriodicalId\":176763,\"journal\":{\"name\":\"1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM 1999). Conference Proceedings (Cat. No.99CH36368)\",\"volume\":\"368 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM 1999). Conference Proceedings (Cat. No.99CH36368)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.1999.799556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM 1999). Conference Proceedings (Cat. No.99CH36368)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.1999.799556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

现代CAD工具必须紧凑地表示大型布尔函数,以获得合理的运行时间进行综合和验证。具有负边属性的共享二元决策图(SBDD),如果使用适当的变量排序,可以以紧凑的形式表示许多函数。在这项工作中,我们描述了一种在sdd中重新排序变量以减少数据结构大小的技术。对于变量排序问题,一个常见的启发式方法是将具有相似特征的变量分组在一起。我们使用这种启发式来制定一种使用基于概率的度量的重新排序问题的技术。我们的结果表明,这种技术优于筛选与可比的运行时间。此外,该方法具有鲁棒性,最终结果与SBDD的初始结构无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SBDD variable reordering based on probabilistic and evolutionary algorithms
Modern CAD tools must represent large Boolean functions compactly in order to obtain reasonable runtimes for synthesis and verification. The shared binary decision diagram (SBDD) with negative edge attributes can represent many functions in a compact form if a proper variable ordering is used. In this work we describe a technique for reordering the variables in an SBDD to reduce the size of the data structure. A common heuristic for the variable ordering problem is to group variables together that have similar characteristics. We use this heuristic to formulate a technique for the reordering problem using probability based metrics. Our results indicate that this technique outperforms sifting with comparable runtimes. Furthermore, the method is robust in that the final results independent of the initial structure of the SBDD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信