遗传算法中基于方差分析的上位性度量

Kit Yan Chan, Mehmet Emin Aydin, T. Fogarty
{"title":"遗传算法中基于方差分析的上位性度量","authors":"Kit Yan Chan, Mehmet Emin Aydin, T. Fogarty","doi":"10.1109/CEC.2003.1299588","DOIUrl":null,"url":null,"abstract":"Epistasis is a measure of interdependence between genes and an indicator of problem difficulty in genetic algorithms. Many researches have concentrated on the epistasis measure in binary coded representation in genetic algorithms. However, a few attempts for epistasis measure in real-coded representation have been reported in the literature. In this paper, we have demonstrated how to use the approach of analysis of variance (ANOVA) to estimate the epistasis in real-coded representation. The approach is useful to analyse epistasis in genetic algorithms in a more detailed level. Examples have been given for showing how to use ANOVA for measuring the amount of epistasis in parametrical problems, and then we have applied this epistatic information provided by ANOVA to improve the performance of genetic algorithm.","PeriodicalId":416243,"journal":{"name":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"An epistasis measure based on the analysis of variance for the real-coded representation in genetic algorithms\",\"authors\":\"Kit Yan Chan, Mehmet Emin Aydin, T. Fogarty\",\"doi\":\"10.1109/CEC.2003.1299588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epistasis is a measure of interdependence between genes and an indicator of problem difficulty in genetic algorithms. Many researches have concentrated on the epistasis measure in binary coded representation in genetic algorithms. However, a few attempts for epistasis measure in real-coded representation have been reported in the literature. In this paper, we have demonstrated how to use the approach of analysis of variance (ANOVA) to estimate the epistasis in real-coded representation. The approach is useful to analyse epistasis in genetic algorithms in a more detailed level. Examples have been given for showing how to use ANOVA for measuring the amount of epistasis in parametrical problems, and then we have applied this epistatic information provided by ANOVA to improve the performance of genetic algorithm.\",\"PeriodicalId\":416243,\"journal\":{\"name\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2003.1299588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2003.1299588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

上位性是基因之间相互依赖的一种度量,也是遗传算法中问题难度的一个指标。遗传算法中二进制编码表示的上位性度量是目前研究的重点。然而,文献中已经报道了一些关于实编码表示中上位性度量的尝试。在本文中,我们展示了如何使用方差分析(ANOVA)的方法来估计实数编码表示中的上位性。该方法有助于更详细地分析遗传算法中的上位性。举例说明了如何使用方差分析来测量参数化问题中上位性的数量,然后我们应用方差分析提供的上位性信息来提高遗传算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An epistasis measure based on the analysis of variance for the real-coded representation in genetic algorithms
Epistasis is a measure of interdependence between genes and an indicator of problem difficulty in genetic algorithms. Many researches have concentrated on the epistasis measure in binary coded representation in genetic algorithms. However, a few attempts for epistasis measure in real-coded representation have been reported in the literature. In this paper, we have demonstrated how to use the approach of analysis of variance (ANOVA) to estimate the epistasis in real-coded representation. The approach is useful to analyse epistasis in genetic algorithms in a more detailed level. Examples have been given for showing how to use ANOVA for measuring the amount of epistasis in parametrical problems, and then we have applied this epistatic information provided by ANOVA to improve the performance of genetic algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信