使用Apache NiFi对多个边缘数据流进行隐私保护情感分析

Abhinay Pandya, Panos Kostakos, Hassan Mehmood, Marta Cortés, Ekaterina Gilman, M. Oussalah, S. Pirttikangas
{"title":"使用Apache NiFi对多个边缘数据流进行隐私保护情感分析","authors":"Abhinay Pandya, Panos Kostakos, Hassan Mehmood, Marta Cortés, Ekaterina Gilman, M. Oussalah, S. Pirttikangas","doi":"10.1109/EISIC49498.2019.9108851","DOIUrl":null,"url":null,"abstract":"Sentiment analysis, also known as opinion mining, plays a big role in both private and public sector Business Intelligence (BI); it attempts to improve public and customer experience. Nevertheless, de-identified sentiment scores from public social media posts can compromise individual privacy due to their vulnerability to record linkage attacks. Established privacy-preserving methods like k-anonymity, l-diversity and t-closeness are offline models exclusively designed for data at rest. Recently, a number of online anonymization algorithms (CASTLE, SKY, SWAF) have been proposed to complement the functional requirements of streaming applications, but without open-source implementation. In this paper, we present a reusable Apache NiFi dataflow that buffers tweets from multiple edge devices and performs anonymized sentiment analysis in real-time, using randomization. The solution can be easily adapted to suit different scenarios, enabling researchers to deploy custom anonymization algorithms.","PeriodicalId":117256,"journal":{"name":"2019 European Intelligence and Security Informatics Conference (EISIC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Privacy preserving sentiment analysis on multiple edge data streams with Apache NiFi\",\"authors\":\"Abhinay Pandya, Panos Kostakos, Hassan Mehmood, Marta Cortés, Ekaterina Gilman, M. Oussalah, S. Pirttikangas\",\"doi\":\"10.1109/EISIC49498.2019.9108851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis, also known as opinion mining, plays a big role in both private and public sector Business Intelligence (BI); it attempts to improve public and customer experience. Nevertheless, de-identified sentiment scores from public social media posts can compromise individual privacy due to their vulnerability to record linkage attacks. Established privacy-preserving methods like k-anonymity, l-diversity and t-closeness are offline models exclusively designed for data at rest. Recently, a number of online anonymization algorithms (CASTLE, SKY, SWAF) have been proposed to complement the functional requirements of streaming applications, but without open-source implementation. In this paper, we present a reusable Apache NiFi dataflow that buffers tweets from multiple edge devices and performs anonymized sentiment analysis in real-time, using randomization. The solution can be easily adapted to suit different scenarios, enabling researchers to deploy custom anonymization algorithms.\",\"PeriodicalId\":117256,\"journal\":{\"name\":\"2019 European Intelligence and Security Informatics Conference (EISIC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Intelligence and Security Informatics Conference (EISIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EISIC49498.2019.9108851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Intelligence and Security Informatics Conference (EISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EISIC49498.2019.9108851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

情感分析,也被称为意见挖掘,在私营和公共部门的商业智能(BI)中都发挥着重要作用;它试图改善公众和客户体验。然而,公开社交媒体帖子中的去识别情绪评分可能会损害个人隐私,因为它们容易受到记录链接攻击。已建立的隐私保护方法,如k-anonymity, l-diversity和t-close,是专门为静态数据设计的离线模型。最近,许多在线匿名化算法(CASTLE, SKY, SWAF)被提出来补充流应用程序的功能需求,但没有开源实现。在本文中,我们提出了一个可重用的Apache NiFi数据流,该数据流缓冲来自多个边缘设备的tweet,并使用随机化实时执行匿名情绪分析。该解决方案可以很容易地适应不同的场景,使研究人员能够部署自定义匿名化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Privacy preserving sentiment analysis on multiple edge data streams with Apache NiFi
Sentiment analysis, also known as opinion mining, plays a big role in both private and public sector Business Intelligence (BI); it attempts to improve public and customer experience. Nevertheless, de-identified sentiment scores from public social media posts can compromise individual privacy due to their vulnerability to record linkage attacks. Established privacy-preserving methods like k-anonymity, l-diversity and t-closeness are offline models exclusively designed for data at rest. Recently, a number of online anonymization algorithms (CASTLE, SKY, SWAF) have been proposed to complement the functional requirements of streaming applications, but without open-source implementation. In this paper, we present a reusable Apache NiFi dataflow that buffers tweets from multiple edge devices and performs anonymized sentiment analysis in real-time, using randomization. The solution can be easily adapted to suit different scenarios, enabling researchers to deploy custom anonymization algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信