Yu-Ming Liang, S. Shih, A. C. Shih, H. Liao, Cheng-Chung Lin
{"title":"原子人类动作识别的语言建模方法","authors":"Yu-Ming Liang, S. Shih, A. C. Shih, H. Liao, Cheng-Chung Lin","doi":"10.1109/MMSP.2007.4412874","DOIUrl":null,"url":null,"abstract":"Visual analysis of human behavior has generated considerable interest in the field of computer vision because it has a wide spectrum of potential applications. Atomic human action recognition is an important part of a human behavior analysis system. In this paper, we propose a language modeling framework for this task. The framework is comprised of two modules: a posture labeling module, and an atomic action learning and recognition module. A posture template selection algorithm is developed based on a modified shape context matching technique. The posture templates form a codebook that is used to convert input posture sequences into training symbol sequences or recognition symbol sequences. Finally, a variable-length Markov model technique is applied to learn and recognize the input symbol sequences of atomic actions. Experiments on real data demonstrate the efficacy of the proposed system.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Language Modeling Approach to Atomic Human Action Recognition\",\"authors\":\"Yu-Ming Liang, S. Shih, A. C. Shih, H. Liao, Cheng-Chung Lin\",\"doi\":\"10.1109/MMSP.2007.4412874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual analysis of human behavior has generated considerable interest in the field of computer vision because it has a wide spectrum of potential applications. Atomic human action recognition is an important part of a human behavior analysis system. In this paper, we propose a language modeling framework for this task. The framework is comprised of two modules: a posture labeling module, and an atomic action learning and recognition module. A posture template selection algorithm is developed based on a modified shape context matching technique. The posture templates form a codebook that is used to convert input posture sequences into training symbol sequences or recognition symbol sequences. Finally, a variable-length Markov model technique is applied to learn and recognize the input symbol sequences of atomic actions. Experiments on real data demonstrate the efficacy of the proposed system.\",\"PeriodicalId\":225295,\"journal\":{\"name\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2007.4412874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Language Modeling Approach to Atomic Human Action Recognition
Visual analysis of human behavior has generated considerable interest in the field of computer vision because it has a wide spectrum of potential applications. Atomic human action recognition is an important part of a human behavior analysis system. In this paper, we propose a language modeling framework for this task. The framework is comprised of two modules: a posture labeling module, and an atomic action learning and recognition module. A posture template selection algorithm is developed based on a modified shape context matching technique. The posture templates form a codebook that is used to convert input posture sequences into training symbol sequences or recognition symbol sequences. Finally, a variable-length Markov model technique is applied to learn and recognize the input symbol sequences of atomic actions. Experiments on real data demonstrate the efficacy of the proposed system.