组合nullstellensz的多项式奇偶校验参数复杂度

Aleksandrs Belovs, G. Ivanyos, Youming Qiao, M. Santha, Siyi Yang
{"title":"组合nullstellensz的多项式奇偶校验参数复杂度","authors":"Aleksandrs Belovs, G. Ivanyos, Youming Qiao, M. Santha, Siyi Yang","doi":"10.4230/LIPIcs.CCC.2017.30","DOIUrl":null,"url":null,"abstract":"The complexity class PPA consists of NP-search problems which are reducible to the parity principle in undirected graphs. It contains a wide variety of interesting problems from graph theory, combinatorics, algebra and number theory, but only a few of these are known to be complete in the class. Before this work, the known complete problems were all discretizations or combinatorial analogues of topological fixed point theorems. \n \nHere we prove the PPA-completeness of two problems of radically different style. They are PPA-Circuit CNSS and PPA-Circuit Chevalley, related respectively to the Combinatorial Nullstellensatz and to the Chevalley-Warning Theorem over the two elements field GF(2). The input of these problems contain PPA-circuits which are arithmetic circuits with special symmetric properties that assure that the polynomials computed by them have always an even number of zeros. In the proof of the result we relate the multilinear degree of the polynomials to the parity of the maximal parse subcircuits that compute monomials with maximal multilinear degree, and we show that the maximal parse subcircuits of a PPA-circuit can be paired in polynomial time.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"On the Polynomial Parity Argument Complexity of the Combinatorial Nullstellensatz\",\"authors\":\"Aleksandrs Belovs, G. Ivanyos, Youming Qiao, M. Santha, Siyi Yang\",\"doi\":\"10.4230/LIPIcs.CCC.2017.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complexity class PPA consists of NP-search problems which are reducible to the parity principle in undirected graphs. It contains a wide variety of interesting problems from graph theory, combinatorics, algebra and number theory, but only a few of these are known to be complete in the class. Before this work, the known complete problems were all discretizations or combinatorial analogues of topological fixed point theorems. \\n \\nHere we prove the PPA-completeness of two problems of radically different style. They are PPA-Circuit CNSS and PPA-Circuit Chevalley, related respectively to the Combinatorial Nullstellensatz and to the Chevalley-Warning Theorem over the two elements field GF(2). The input of these problems contain PPA-circuits which are arithmetic circuits with special symmetric properties that assure that the polynomials computed by them have always an even number of zeros. In the proof of the result we relate the multilinear degree of the polynomials to the parity of the maximal parse subcircuits that compute monomials with maximal multilinear degree, and we show that the maximal parse subcircuits of a PPA-circuit can be paired in polynomial time.\",\"PeriodicalId\":246506,\"journal\":{\"name\":\"Cybersecurity and Cyberforensics Conference\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity and Cyberforensics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2017.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2017.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

复杂度类PPA由np -搜索问题组成,这些问题可约化为无向图中的宇称原理。它包含了各种各样有趣的问题,从图论,组合学,代数和数论,但其中只有少数被认为是完整的。在此工作之前,已知的完全问题都是拓扑不动点定理的离散化或组合类似。本文证明了两个风格截然不同的问题的ppa -完备性。它们是PPA-Circuit CNSS和PPA-Circuit Chevalley,分别与组合Nullstellensatz和双元域GF(2)上的Chevalley- warning定理有关。这些问题的输入包含ppa电路,这是一种算术电路,具有特殊的对称性质,确保由它们计算的多项式总是偶数个零。在证明结果的过程中,我们将多项式的多线性度与计算具有最大多线性度的单项式的极大解析子电路的奇偶性联系起来,并证明了ppa电路的极大解析子电路在多项式时间内是可以配对的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Polynomial Parity Argument Complexity of the Combinatorial Nullstellensatz
The complexity class PPA consists of NP-search problems which are reducible to the parity principle in undirected graphs. It contains a wide variety of interesting problems from graph theory, combinatorics, algebra and number theory, but only a few of these are known to be complete in the class. Before this work, the known complete problems were all discretizations or combinatorial analogues of topological fixed point theorems. Here we prove the PPA-completeness of two problems of radically different style. They are PPA-Circuit CNSS and PPA-Circuit Chevalley, related respectively to the Combinatorial Nullstellensatz and to the Chevalley-Warning Theorem over the two elements field GF(2). The input of these problems contain PPA-circuits which are arithmetic circuits with special symmetric properties that assure that the polynomials computed by them have always an even number of zeros. In the proof of the result we relate the multilinear degree of the polynomials to the parity of the maximal parse subcircuits that compute monomials with maximal multilinear degree, and we show that the maximal parse subcircuits of a PPA-circuit can be paired in polynomial time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信