Chang-hun Lee, Hyo-Sang Shin, A. Tsourdos, Z. Skaf
{"title":"为航空公司维修操作开发FDR(飞行数据记录器)数据分析","authors":"Chang-hun Lee, Hyo-Sang Shin, A. Tsourdos, Z. Skaf","doi":"10.1109/MFI.2017.8170443","DOIUrl":null,"url":null,"abstract":"In this article, we propose a data analytics development to detect unusual patterns of flights from a vast amounts of FDR (flight data recorder) data for supporting airline maintenance operations. A fundamental rationale behind this development is that if there are potential issues on mechanical parts of an aircraft during a flight, evidences for these issues are most likely included in the FDR data. Therefore, the data analysis of FDR data enables us to detect the potential issues in the aircraft before they occur. To this end, in a data pre-processing step, a data filtering, a data sampling, and a data transformation are sequentially performed. And then, in this analysis, all time series data in the FDR are classified into three types: a continuous signal, a discrete signal, and a warning signal. For each type of signal, a high-dimensional vector by arranging the time series data is chosen as features. In the feature section process, a correlation analysis, a correlation relaxation, and a dimension reduction are sequentially conducted. Finally, a type of k-nearest neighbor approach is applied to automatically identify the FDR data in which the unusual flight patterns are recorded from a large amount of FDR data. The proposed method is tested with using a realistic FDR data from the NASA's open database.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data analytics development of FDR (Flight Data Recorder) data for airline maintenance operations\",\"authors\":\"Chang-hun Lee, Hyo-Sang Shin, A. Tsourdos, Z. Skaf\",\"doi\":\"10.1109/MFI.2017.8170443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose a data analytics development to detect unusual patterns of flights from a vast amounts of FDR (flight data recorder) data for supporting airline maintenance operations. A fundamental rationale behind this development is that if there are potential issues on mechanical parts of an aircraft during a flight, evidences for these issues are most likely included in the FDR data. Therefore, the data analysis of FDR data enables us to detect the potential issues in the aircraft before they occur. To this end, in a data pre-processing step, a data filtering, a data sampling, and a data transformation are sequentially performed. And then, in this analysis, all time series data in the FDR are classified into three types: a continuous signal, a discrete signal, and a warning signal. For each type of signal, a high-dimensional vector by arranging the time series data is chosen as features. In the feature section process, a correlation analysis, a correlation relaxation, and a dimension reduction are sequentially conducted. Finally, a type of k-nearest neighbor approach is applied to automatically identify the FDR data in which the unusual flight patterns are recorded from a large amount of FDR data. The proposed method is tested with using a realistic FDR data from the NASA's open database.\",\"PeriodicalId\":402371,\"journal\":{\"name\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2017.8170443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data analytics development of FDR (Flight Data Recorder) data for airline maintenance operations
In this article, we propose a data analytics development to detect unusual patterns of flights from a vast amounts of FDR (flight data recorder) data for supporting airline maintenance operations. A fundamental rationale behind this development is that if there are potential issues on mechanical parts of an aircraft during a flight, evidences for these issues are most likely included in the FDR data. Therefore, the data analysis of FDR data enables us to detect the potential issues in the aircraft before they occur. To this end, in a data pre-processing step, a data filtering, a data sampling, and a data transformation are sequentially performed. And then, in this analysis, all time series data in the FDR are classified into three types: a continuous signal, a discrete signal, and a warning signal. For each type of signal, a high-dimensional vector by arranging the time series data is chosen as features. In the feature section process, a correlation analysis, a correlation relaxation, and a dimension reduction are sequentially conducted. Finally, a type of k-nearest neighbor approach is applied to automatically identify the FDR data in which the unusual flight patterns are recorded from a large amount of FDR data. The proposed method is tested with using a realistic FDR data from the NASA's open database.