基于粒子群算法的无刷直流电动机速度和位置控制器在线整定

H. N. Tran, T. Nguyen, Ton Hoang Nguyen, Bac Viet Nguyen, H. Cao, Jaewook Jeon
{"title":"基于粒子群算法的无刷直流电动机速度和位置控制器在线整定","authors":"H. N. Tran, T. Nguyen, Ton Hoang Nguyen, Bac Viet Nguyen, H. Cao, Jaewook Jeon","doi":"10.1109/IMCOM53663.2022.9721774","DOIUrl":null,"url":null,"abstract":"This paper proposes an online tuning method to improve the accuracy and stability of brushless direct current (BLDC) drives. Tuning of controller gains using conventional directly methods does not satisfy the performance criteria and the error is large under varying loads. To overcome this problem, a parameters estimator and a particle swarm optimization (PSO) algorithm are proposed. The PSO method is used to increase the optimal ability, ensure that the tuned gains is the best for the motor operation corresponding to the change of load. A combination the parameters estimator with a lookup table (LUT) is proposed to improve the convergence time as well as tuning time of the PSO method. In this paper, the proposed method is applied to determine optimal gains of proportional- integral-derivative (PID) speed and position controller of BLDC drives. The effectiveness of the proposed method is validated by experimental results.","PeriodicalId":367038,"journal":{"name":"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Online-Tuning of Speed and Position Controllers using Particle Swarm Optimization Algorithm for a BLDC Motor\",\"authors\":\"H. N. Tran, T. Nguyen, Ton Hoang Nguyen, Bac Viet Nguyen, H. Cao, Jaewook Jeon\",\"doi\":\"10.1109/IMCOM53663.2022.9721774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an online tuning method to improve the accuracy and stability of brushless direct current (BLDC) drives. Tuning of controller gains using conventional directly methods does not satisfy the performance criteria and the error is large under varying loads. To overcome this problem, a parameters estimator and a particle swarm optimization (PSO) algorithm are proposed. The PSO method is used to increase the optimal ability, ensure that the tuned gains is the best for the motor operation corresponding to the change of load. A combination the parameters estimator with a lookup table (LUT) is proposed to improve the convergence time as well as tuning time of the PSO method. In this paper, the proposed method is applied to determine optimal gains of proportional- integral-derivative (PID) speed and position controller of BLDC drives. The effectiveness of the proposed method is validated by experimental results.\",\"PeriodicalId\":367038,\"journal\":{\"name\":\"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCOM53663.2022.9721774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM53663.2022.9721774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提高无刷直流(BLDC)驱动器的精度和稳定性,提出了一种在线调谐方法。传统的直接方法对控制器增益的整定不满足性能要求,在变负载下误差较大。为了克服这一问题,提出了参数估计器和粒子群优化算法。采用粒子群优化方法提高了优化能力,保证了随着负载的变化,电机运行的调谐增益是最佳的。为了提高粒子群算法的收敛时间和调谐时间,提出了一种参数估计器与查找表(LUT)的组合。本文将该方法应用于无刷直流驱动器的比例-积分-导数(PID)速度和位置控制器的最优增益确定。实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online-Tuning of Speed and Position Controllers using Particle Swarm Optimization Algorithm for a BLDC Motor
This paper proposes an online tuning method to improve the accuracy and stability of brushless direct current (BLDC) drives. Tuning of controller gains using conventional directly methods does not satisfy the performance criteria and the error is large under varying loads. To overcome this problem, a parameters estimator and a particle swarm optimization (PSO) algorithm are proposed. The PSO method is used to increase the optimal ability, ensure that the tuned gains is the best for the motor operation corresponding to the change of load. A combination the parameters estimator with a lookup table (LUT) is proposed to improve the convergence time as well as tuning time of the PSO method. In this paper, the proposed method is applied to determine optimal gains of proportional- integral-derivative (PID) speed and position controller of BLDC drives. The effectiveness of the proposed method is validated by experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信