肾活检样本图像有效区域的分割

S. Seminowich, A. Sar, S. Yilmaz, R. Rangayyan
{"title":"肾活检样本图像有效区域的分割","authors":"S. Seminowich, A. Sar, S. Yilmaz, R. Rangayyan","doi":"10.1109/CCECE.2009.5090101","DOIUrl":null,"url":null,"abstract":"Diagnosis and monitoring of kidney diseases and transplants is supported by microscopic analysis of needle-core biopsy samples. The current methods of analysis allow for inconsistencies, bias, and inaccuracies. We propose image processing methods for automatic segmentation of the effective biopsy area (cortex and medulla) from digital images of renal biopsy samples. The methods include opening-by-reconstruction, a morphological closing operation, and morphological erosion. The results are compared to 100 randomly selected images manually marked by an experienced renal pathologist. Comparative measures indicate that the automatically detected region of interest closely matches the ground truth; the mean distance to the closest point was 5.46 ± 3.92 µm (6 ± 4.31 pixels) and the true-positive fraction was 98.25 ± 1.77%.","PeriodicalId":153464,"journal":{"name":"2009 Canadian Conference on Electrical and Computer Engineering","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Segmentation of the effective area of images of renal biopsy samples\",\"authors\":\"S. Seminowich, A. Sar, S. Yilmaz, R. Rangayyan\",\"doi\":\"10.1109/CCECE.2009.5090101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diagnosis and monitoring of kidney diseases and transplants is supported by microscopic analysis of needle-core biopsy samples. The current methods of analysis allow for inconsistencies, bias, and inaccuracies. We propose image processing methods for automatic segmentation of the effective biopsy area (cortex and medulla) from digital images of renal biopsy samples. The methods include opening-by-reconstruction, a morphological closing operation, and morphological erosion. The results are compared to 100 randomly selected images manually marked by an experienced renal pathologist. Comparative measures indicate that the automatically detected region of interest closely matches the ground truth; the mean distance to the closest point was 5.46 ± 3.92 µm (6 ± 4.31 pixels) and the true-positive fraction was 98.25 ± 1.77%.\",\"PeriodicalId\":153464,\"journal\":{\"name\":\"2009 Canadian Conference on Electrical and Computer Engineering\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Canadian Conference on Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.2009.5090101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2009.5090101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

肾脏疾病和移植的诊断和监测是由针芯活检样本的显微分析支持的。当前的分析方法允许不一致、偏差和不准确。我们提出了从肾活检样本的数字图像中自动分割有效活检区域(皮质和髓质)的图像处理方法。方法包括重建开放、形态闭合和形态侵蚀。结果与100个随机选择的图像进行比较,由经验丰富的肾脏病理学家手动标记。对比测量表明,自动检测的感兴趣区域与地面真实值非常匹配;离最近点的平均距离为5.46±3.92µm(6±4.31像素),真阳性分数为98.25±1.77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of the effective area of images of renal biopsy samples
Diagnosis and monitoring of kidney diseases and transplants is supported by microscopic analysis of needle-core biopsy samples. The current methods of analysis allow for inconsistencies, bias, and inaccuracies. We propose image processing methods for automatic segmentation of the effective biopsy area (cortex and medulla) from digital images of renal biopsy samples. The methods include opening-by-reconstruction, a morphological closing operation, and morphological erosion. The results are compared to 100 randomly selected images manually marked by an experienced renal pathologist. Comparative measures indicate that the automatically detected region of interest closely matches the ground truth; the mean distance to the closest point was 5.46 ± 3.92 µm (6 ± 4.31 pixels) and the true-positive fraction was 98.25 ± 1.77%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信