{"title":"毛雷尔-卡坦式","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.21","DOIUrl":null,"url":null,"abstract":"This chapter illustrates the Maurer-Cartan form. On every Lie group G with Lie algebra g, there is a unique canonically defined left-invariant g-valued 1-form called the Maurer-Cartan form. The chapter describes the Maurer-Cartan form and the equation it satisfies, the Maurer-Cartan equation. The Maurer-Cartan form allows one to define a connection on the product bundle M × G → M for any manifold M. The Lie algebra g of a Lie group G is defined to be the tangent space at the identity. One will often identify the two vector spaces and think of elements of g as left-invariant vector fields on G.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Maurer–Cartan Form\",\"authors\":\"L. Tu\",\"doi\":\"10.2307/j.ctvrdf1gz.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter illustrates the Maurer-Cartan form. On every Lie group G with Lie algebra g, there is a unique canonically defined left-invariant g-valued 1-form called the Maurer-Cartan form. The chapter describes the Maurer-Cartan form and the equation it satisfies, the Maurer-Cartan equation. The Maurer-Cartan form allows one to define a connection on the product bundle M × G → M for any manifold M. The Lie algebra g of a Lie group G is defined to be the tangent space at the identity. One will often identify the two vector spaces and think of elements of g as left-invariant vector fields on G.\",\"PeriodicalId\":272846,\"journal\":{\"name\":\"Introductory Lectures on Equivariant Cohomology\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introductory Lectures on Equivariant Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvrdf1gz.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter illustrates the Maurer-Cartan form. On every Lie group G with Lie algebra g, there is a unique canonically defined left-invariant g-valued 1-form called the Maurer-Cartan form. The chapter describes the Maurer-Cartan form and the equation it satisfies, the Maurer-Cartan equation. The Maurer-Cartan form allows one to define a connection on the product bundle M × G → M for any manifold M. The Lie algebra g of a Lie group G is defined to be the tangent space at the identity. One will often identify the two vector spaces and think of elements of g as left-invariant vector fields on G.