敏感数据的交互式匿名化

Xiaokui Xiao, Guozhang Wang, J. Gehrke
{"title":"敏感数据的交互式匿名化","authors":"Xiaokui Xiao, Guozhang Wang, J. Gehrke","doi":"10.1145/1559845.1559979","DOIUrl":null,"url":null,"abstract":"There has been much recent work on algorithms for limiting disclosure in data publishing, however they have not been put to use in any toolkit for practicioners. We will demonstrate CAT, the Cornell Anonymization Toolkit, designed for interactive anonymization. CAT has an interface that is easy to use; it guides users through the process of preparing a dataset for publication while limiting disclosure through the identification of records that have high risk under various attacker models.","PeriodicalId":344093,"journal":{"name":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Interactive anonymization of sensitive data\",\"authors\":\"Xiaokui Xiao, Guozhang Wang, J. Gehrke\",\"doi\":\"10.1145/1559845.1559979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been much recent work on algorithms for limiting disclosure in data publishing, however they have not been put to use in any toolkit for practicioners. We will demonstrate CAT, the Cornell Anonymization Toolkit, designed for interactive anonymization. CAT has an interface that is easy to use; it guides users through the process of preparing a dataset for publication while limiting disclosure through the identification of records that have high risk under various attacker models.\",\"PeriodicalId\":344093,\"journal\":{\"name\":\"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1559845.1559979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1559845.1559979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

最近有很多关于限制数据发布中披露的算法的工作,但是它们还没有在任何从业者工具包中使用。我们将演示CAT (Cornell Anonymization Toolkit),它是为交互式匿名化设计的。CAT具有易于使用的界面;它指导用户完成准备发布数据集的过程,同时通过识别在各种攻击模型下具有高风险的记录来限制披露。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive anonymization of sensitive data
There has been much recent work on algorithms for limiting disclosure in data publishing, however they have not been put to use in any toolkit for practicioners. We will demonstrate CAT, the Cornell Anonymization Toolkit, designed for interactive anonymization. CAT has an interface that is easy to use; it guides users through the process of preparing a dataset for publication while limiting disclosure through the identification of records that have high risk under various attacker models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信