Danny Cooper, E. Heilman, Kyle Brogle, L. Reyzin, S. Goldberg
{"title":"关于RPKI当局行为不当的风险","authors":"Danny Cooper, E. Heilman, Kyle Brogle, L. Reyzin, S. Goldberg","doi":"10.1145/2535771.2535787","DOIUrl":null,"url":null,"abstract":"The RPKI is a new security infrastructure that relies on trusted authorities to prevent some of the most devastating attacks on interdomain routing. The threat model for the RPKI supposes that authorities are trusted and routing is under attack. Here we discuss the risks that arise when this threat model is flipped: when RPKI authorities are faulty, misconfigured, compromised, or compelled to misbehave. We show how design decisions that elegantly address the vulnerabilities in the original threat model have unexpected side effects in this flipped threat model. In particular, we show new targeted attacks that allow RPKI authorities, under certain conditions, to limit access to IP prefixes, and discuss the risk that transient RPKI faults can take IP prefixes offline. Our results suggest promising directions for future research, and have implications on the design of security architectures that are appropriate for the untrusted and error-prone Internet.","PeriodicalId":203847,"journal":{"name":"Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"On the risk of misbehaving RPKI authorities\",\"authors\":\"Danny Cooper, E. Heilman, Kyle Brogle, L. Reyzin, S. Goldberg\",\"doi\":\"10.1145/2535771.2535787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The RPKI is a new security infrastructure that relies on trusted authorities to prevent some of the most devastating attacks on interdomain routing. The threat model for the RPKI supposes that authorities are trusted and routing is under attack. Here we discuss the risks that arise when this threat model is flipped: when RPKI authorities are faulty, misconfigured, compromised, or compelled to misbehave. We show how design decisions that elegantly address the vulnerabilities in the original threat model have unexpected side effects in this flipped threat model. In particular, we show new targeted attacks that allow RPKI authorities, under certain conditions, to limit access to IP prefixes, and discuss the risk that transient RPKI faults can take IP prefixes offline. Our results suggest promising directions for future research, and have implications on the design of security architectures that are appropriate for the untrusted and error-prone Internet.\",\"PeriodicalId\":203847,\"journal\":{\"name\":\"Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2535771.2535787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535771.2535787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The RPKI is a new security infrastructure that relies on trusted authorities to prevent some of the most devastating attacks on interdomain routing. The threat model for the RPKI supposes that authorities are trusted and routing is under attack. Here we discuss the risks that arise when this threat model is flipped: when RPKI authorities are faulty, misconfigured, compromised, or compelled to misbehave. We show how design decisions that elegantly address the vulnerabilities in the original threat model have unexpected side effects in this flipped threat model. In particular, we show new targeted attacks that allow RPKI authorities, under certain conditions, to limit access to IP prefixes, and discuss the risk that transient RPKI faults can take IP prefixes offline. Our results suggest promising directions for future research, and have implications on the design of security architectures that are appropriate for the untrusted and error-prone Internet.