基于强化学习的四足机器人单腿操作空间控制

Jinhui Rao, Honglei An, Taihui Zhang, Yangzhen Chen, Hongxu Ma
{"title":"基于强化学习的四足机器人单腿操作空间控制","authors":"Jinhui Rao, Honglei An, Taihui Zhang, Yangzhen Chen, Hongxu Ma","doi":"10.1109/CGNCC.2016.7828853","DOIUrl":null,"url":null,"abstract":"Due to the strongly environmental adaptation, quadruped robot becomes a research hot spot. The single leg control lays foundation for the control of quadruped robot. The operational space control which is used in the quadruped robot single leg control algorithms usually strongly depends on the accuracy of the model. This paper applies RBF (radial basis function) neural network adaptive control on the single leg, and a kind of control parameters adjustment method which is based on reinforcement learning is proposed. The result shows the algorithm effectively improves the control accuracy and convergence speed under the high-dynamic condition.","PeriodicalId":426650,"journal":{"name":"2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC)","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Single leg operational space control of quadruped robot based on reinforcement learning\",\"authors\":\"Jinhui Rao, Honglei An, Taihui Zhang, Yangzhen Chen, Hongxu Ma\",\"doi\":\"10.1109/CGNCC.2016.7828853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the strongly environmental adaptation, quadruped robot becomes a research hot spot. The single leg control lays foundation for the control of quadruped robot. The operational space control which is used in the quadruped robot single leg control algorithms usually strongly depends on the accuracy of the model. This paper applies RBF (radial basis function) neural network adaptive control on the single leg, and a kind of control parameters adjustment method which is based on reinforcement learning is proposed. The result shows the algorithm effectively improves the control accuracy and convergence speed under the high-dynamic condition.\",\"PeriodicalId\":426650,\"journal\":{\"name\":\"2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC)\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGNCC.2016.7828853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGNCC.2016.7828853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于具有较强的环境适应性,四足机器人成为研究热点。单腿控制为四足机器人的控制奠定了基础。四足机器人单腿控制算法中使用的操作空间控制通常很大程度上依赖于模型的精度。将RBF (radial basis function)神经网络自适应控制应用于单腿机器人,提出了一种基于强化学习的控制参数调整方法。结果表明,该算法有效地提高了高动态条件下的控制精度和收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single leg operational space control of quadruped robot based on reinforcement learning
Due to the strongly environmental adaptation, quadruped robot becomes a research hot spot. The single leg control lays foundation for the control of quadruped robot. The operational space control which is used in the quadruped robot single leg control algorithms usually strongly depends on the accuracy of the model. This paper applies RBF (radial basis function) neural network adaptive control on the single leg, and a kind of control parameters adjustment method which is based on reinforcement learning is proposed. The result shows the algorithm effectively improves the control accuracy and convergence speed under the high-dynamic condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信