针对多目标的多模式检测前跟踪

S. P. Ebenezer, A. Papandreou-Suppappola
{"title":"针对多目标的多模式检测前跟踪","authors":"S. P. Ebenezer, A. Papandreou-Suppappola","doi":"10.1109/WDD.2012.7311273","DOIUrl":null,"url":null,"abstract":"The track-before-detect (TBD) approach can be used to track a single target in a highly noisy radar scene. This is because it makes use of unthresholded observations and incorporates a binary target existence variable into its target state estimation process when implemented as a particle filter (PF). The PF-TBD has been extended to track two targets but only for the special case of the second target spawning from the first target. This paper proposes the extension of the recursive PF-TBD approach to detect multiple targets in low signal-to-noise ratios (SNRs). The new algorithm estimates the joint posterior probability density of all the target trajectories while keeping track of targets entering and leaving the noisy radar scene under observation using multiple modes. The algorithm's successful performance is demonstrated using a simulated three-target example.","PeriodicalId":102625,"journal":{"name":"2012 International Waveform Diversity & Design Conference (WDD)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multiple mode track-before-detect for multiple targets\",\"authors\":\"S. P. Ebenezer, A. Papandreou-Suppappola\",\"doi\":\"10.1109/WDD.2012.7311273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The track-before-detect (TBD) approach can be used to track a single target in a highly noisy radar scene. This is because it makes use of unthresholded observations and incorporates a binary target existence variable into its target state estimation process when implemented as a particle filter (PF). The PF-TBD has been extended to track two targets but only for the special case of the second target spawning from the first target. This paper proposes the extension of the recursive PF-TBD approach to detect multiple targets in low signal-to-noise ratios (SNRs). The new algorithm estimates the joint posterior probability density of all the target trajectories while keeping track of targets entering and leaving the noisy radar scene under observation using multiple modes. The algorithm's successful performance is demonstrated using a simulated three-target example.\",\"PeriodicalId\":102625,\"journal\":{\"name\":\"2012 International Waveform Diversity & Design Conference (WDD)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Waveform Diversity & Design Conference (WDD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WDD.2012.7311273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Waveform Diversity & Design Conference (WDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WDD.2012.7311273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

探测前跟踪(TBD)方法可用于在高噪声雷达场景下跟踪单个目标。这是因为它利用了无阈值观测,并在作为粒子滤波器(PF)实现时将二进制目标存在变量纳入其目标状态估计过程。PF-TBD已经扩展到跟踪两个目标,但只有在第二个目标从第一个目标产卵的特殊情况下。本文提出了递推PF-TBD方法的扩展,用于低信噪比下的多目标检测。该算法在跟踪目标进出噪声雷达场景的同时,利用多种模式估计所有目标轨迹的联合后验概率密度。通过一个模拟的三目标算例验证了该算法的成功性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple mode track-before-detect for multiple targets
The track-before-detect (TBD) approach can be used to track a single target in a highly noisy radar scene. This is because it makes use of unthresholded observations and incorporates a binary target existence variable into its target state estimation process when implemented as a particle filter (PF). The PF-TBD has been extended to track two targets but only for the special case of the second target spawning from the first target. This paper proposes the extension of the recursive PF-TBD approach to detect multiple targets in low signal-to-noise ratios (SNRs). The new algorithm estimates the joint posterior probability density of all the target trajectories while keeping track of targets entering and leaving the noisy radar scene under observation using multiple modes. The algorithm's successful performance is demonstrated using a simulated three-target example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信