{"title":"属性保留人脸去识别","authors":"Amin Jourabloo, Xi Yin, Xiaoming Liu","doi":"10.1109/ICB.2015.7139096","DOIUrl":null,"url":null,"abstract":"In this paper, we recognize the need of de-identifying a face image while preserving a large set of facial attributes, which has not been explicitly studied before. We verify the underling assumption that different visual features are used for identification and attribute classification. As a result, the proposed approach jointly models face de-identification and attribute preservation in a unified optimization framework. Specifically, a face image is represented by the shape and appearance parameters of AAM. Motivated by k-Same, we select k images that share the most similar attributes with those of a test image. Instead of using the average of k images, adopted by k-Same methods, we formulate an objective function and use gradient descent to learn the optimal weights for fusing k images. Experimental results show that our proposed approach performs substantially better than the baseline method with a lower face recognition rate, while preserving more facial attributes.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":"{\"title\":\"Attribute preserved face de-identification\",\"authors\":\"Amin Jourabloo, Xi Yin, Xiaoming Liu\",\"doi\":\"10.1109/ICB.2015.7139096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we recognize the need of de-identifying a face image while preserving a large set of facial attributes, which has not been explicitly studied before. We verify the underling assumption that different visual features are used for identification and attribute classification. As a result, the proposed approach jointly models face de-identification and attribute preservation in a unified optimization framework. Specifically, a face image is represented by the shape and appearance parameters of AAM. Motivated by k-Same, we select k images that share the most similar attributes with those of a test image. Instead of using the average of k images, adopted by k-Same methods, we formulate an objective function and use gradient descent to learn the optimal weights for fusing k images. Experimental results show that our proposed approach performs substantially better than the baseline method with a lower face recognition rate, while preserving more facial attributes.\",\"PeriodicalId\":237372,\"journal\":{\"name\":\"2015 International Conference on Biometrics (ICB)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB.2015.7139096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we recognize the need of de-identifying a face image while preserving a large set of facial attributes, which has not been explicitly studied before. We verify the underling assumption that different visual features are used for identification and attribute classification. As a result, the proposed approach jointly models face de-identification and attribute preservation in a unified optimization framework. Specifically, a face image is represented by the shape and appearance parameters of AAM. Motivated by k-Same, we select k images that share the most similar attributes with those of a test image. Instead of using the average of k images, adopted by k-Same methods, we formulate an objective function and use gradient descent to learn the optimal weights for fusing k images. Experimental results show that our proposed approach performs substantially better than the baseline method with a lower face recognition rate, while preserving more facial attributes.