中性实巴拿赫和希尔伯特空间导论

Mehmet Çelik, N. Olgun
{"title":"中性实巴拿赫和希尔伯特空间导论","authors":"Mehmet Çelik, N. Olgun","doi":"10.54216/gjmsa.020101","DOIUrl":null,"url":null,"abstract":"Banach and Hillbert spaces are the main important concepts in the study of classical functional analysis. This paper generalizes these two kinds of functional spaces into neutrosophic systems, where the concept of neutrosophic Banach space and neutrosophic Hillbert space will be defined and discussed for the first time over partial ordered neutrosophic spaces. Also, many related concepts such as neutrosophic Cauchy sequence, neutrosophic Bessel's inequality, and neutrosophic Parseval's identity will be established and proved.","PeriodicalId":299243,"journal":{"name":"Galoitica: Journal of Mathematical Structures and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Introduction to Neutrosophic Real Banach and Hillbert Spaces\",\"authors\":\"Mehmet Çelik, N. Olgun\",\"doi\":\"10.54216/gjmsa.020101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Banach and Hillbert spaces are the main important concepts in the study of classical functional analysis. This paper generalizes these two kinds of functional spaces into neutrosophic systems, where the concept of neutrosophic Banach space and neutrosophic Hillbert space will be defined and discussed for the first time over partial ordered neutrosophic spaces. Also, many related concepts such as neutrosophic Cauchy sequence, neutrosophic Bessel's inequality, and neutrosophic Parseval's identity will be established and proved.\",\"PeriodicalId\":299243,\"journal\":{\"name\":\"Galoitica: Journal of Mathematical Structures and Applications\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Galoitica: Journal of Mathematical Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/gjmsa.020101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Galoitica: Journal of Mathematical Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/gjmsa.020101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Banach和Hillbert空间是经典泛函分析研究中的两个重要概念。本文将这两种功能空间推广到嗜中性系统中,并首次在偏序嗜中性空间上定义并讨论了嗜中性Banach空间和嗜中性Hillbert空间的概念。建立并证明了中性柯西序列、中性贝塞尔不等式、中性Parseval恒等式等相关概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Introduction to Neutrosophic Real Banach and Hillbert Spaces
Banach and Hillbert spaces are the main important concepts in the study of classical functional analysis. This paper generalizes these two kinds of functional spaces into neutrosophic systems, where the concept of neutrosophic Banach space and neutrosophic Hillbert space will be defined and discussed for the first time over partial ordered neutrosophic spaces. Also, many related concepts such as neutrosophic Cauchy sequence, neutrosophic Bessel's inequality, and neutrosophic Parseval's identity will be established and proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信