汇率预测与机器学习,深度学习和时间序列方法使用替代数据

Aklant Das, Dhanya Pramod
{"title":"汇率预测与机器学习,深度学习和时间序列方法使用替代数据","authors":"Aklant Das, Dhanya Pramod","doi":"10.1109/InCACCT57535.2023.10141844","DOIUrl":null,"url":null,"abstract":"Using alternative data to predict macroeconomic variables is efficient and consumes less time. This study aims to find the effectiveness of using alternative data such as the NASDAQ Index, NIFTY 50 Index, and SENSEX Index to forecast Exchange rates. The study used USD conversion rate data from various websites such as money control, yahoo finance, India stat, official Reserve Bank of India (RBI) website. The experiment-based research uses Machine Learning (ML), Deep Learning (DL), and Time Series Modeling to predict conversion rates. The study reveals that the NASDAQ index significantly affects conversion rate, whereas the NIFTY 50 and SENSEX indexes had less impact. It is evident from this study that the Ensemble ML model gives the best prediction results with 90% accuracy. DL models were unreliable, and time series forecasting gave considerable accuracy.","PeriodicalId":405272,"journal":{"name":"2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT)","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exchange Rate Prediction with Machine Learning, Deep Learning, and Time Series Methods Using Alternative Data\",\"authors\":\"Aklant Das, Dhanya Pramod\",\"doi\":\"10.1109/InCACCT57535.2023.10141844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using alternative data to predict macroeconomic variables is efficient and consumes less time. This study aims to find the effectiveness of using alternative data such as the NASDAQ Index, NIFTY 50 Index, and SENSEX Index to forecast Exchange rates. The study used USD conversion rate data from various websites such as money control, yahoo finance, India stat, official Reserve Bank of India (RBI) website. The experiment-based research uses Machine Learning (ML), Deep Learning (DL), and Time Series Modeling to predict conversion rates. The study reveals that the NASDAQ index significantly affects conversion rate, whereas the NIFTY 50 and SENSEX indexes had less impact. It is evident from this study that the Ensemble ML model gives the best prediction results with 90% accuracy. DL models were unreliable, and time series forecasting gave considerable accuracy.\",\"PeriodicalId\":405272,\"journal\":{\"name\":\"2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT)\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InCACCT57535.2023.10141844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InCACCT57535.2023.10141844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用替代数据来预测宏观经济变量既有效又省时。本研究的目的是发现使用替代数据,如纳斯达克指数,NIFTY 50指数和SENSEX指数预测汇率的有效性。该研究使用了来自各种网站的美元汇率数据,如货币控制、雅虎财经、印度统计局、印度储备银行(RBI)官方网站。基于实验的研究使用机器学习(ML),深度学习(DL)和时间序列建模来预测转化率。研究发现,纳斯达克指数显著影响转化率,而NIFTY 50和SENSEX指数的影响较小。从这项研究中可以明显看出,Ensemble ML模型给出了最好的预测结果,准确率达到90%。深度学习模型是不可靠的,时间序列预测具有相当的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exchange Rate Prediction with Machine Learning, Deep Learning, and Time Series Methods Using Alternative Data
Using alternative data to predict macroeconomic variables is efficient and consumes less time. This study aims to find the effectiveness of using alternative data such as the NASDAQ Index, NIFTY 50 Index, and SENSEX Index to forecast Exchange rates. The study used USD conversion rate data from various websites such as money control, yahoo finance, India stat, official Reserve Bank of India (RBI) website. The experiment-based research uses Machine Learning (ML), Deep Learning (DL), and Time Series Modeling to predict conversion rates. The study reveals that the NASDAQ index significantly affects conversion rate, whereas the NIFTY 50 and SENSEX indexes had less impact. It is evident from this study that the Ensemble ML model gives the best prediction results with 90% accuracy. DL models were unreliable, and time series forecasting gave considerable accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信