基于深度学习的MLEM PET图像重建中分辨率恢复伪影抑制

Casper O. da Luis, A. Reader
{"title":"基于深度学习的MLEM PET图像重建中分辨率恢复伪影抑制","authors":"Casper O. da Luis, A. Reader","doi":"10.1109/NSSMIC.2017.8532624","DOIUrl":null,"url":null,"abstract":"Resolution modelling in maximum likelihood expectation maximisation (MLEM) image reconstruction recovers resolution but at the cost of introducing ringing artefacts. Under-modelling, post-smoothing (PS) and regularisation methods which aim to suppress these artefacts nearly all result in a loss of resolution. This work proposes the use of deep convolutional neural networks (DCNNs) as a post-reconstruction image processing step to reduce reconstruction artefacts without compromising the resolution recovery.The DCNN results successfully suppress ringing arte-facts and furthermore result in an 80% lower normalised root mean squared error (NRMSE) versus MLEM, compared to a best decrease of only 0.2% when an optimal level of PS of MLEM is performed. The resultant images from the DCNN have lower noise, reduced ringing and partial volume effects, as well as sharper edges and improved resolution.","PeriodicalId":155659,"journal":{"name":"2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Deep Learning for Suppression of Resolution-Recovery Artefacts in MLEM PET Image Reconstruction\",\"authors\":\"Casper O. da Luis, A. Reader\",\"doi\":\"10.1109/NSSMIC.2017.8532624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resolution modelling in maximum likelihood expectation maximisation (MLEM) image reconstruction recovers resolution but at the cost of introducing ringing artefacts. Under-modelling, post-smoothing (PS) and regularisation methods which aim to suppress these artefacts nearly all result in a loss of resolution. This work proposes the use of deep convolutional neural networks (DCNNs) as a post-reconstruction image processing step to reduce reconstruction artefacts without compromising the resolution recovery.The DCNN results successfully suppress ringing arte-facts and furthermore result in an 80% lower normalised root mean squared error (NRMSE) versus MLEM, compared to a best decrease of only 0.2% when an optimal level of PS of MLEM is performed. The resultant images from the DCNN have lower noise, reduced ringing and partial volume effects, as well as sharper edges and improved resolution.\",\"PeriodicalId\":155659,\"journal\":{\"name\":\"2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2017.8532624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2017.8532624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

最大似然期望最大化(MLEM)图像重建中的分辨率建模恢复了分辨率,但以引入环状伪影为代价。欠建模,后平滑(PS)和正则化方法,旨在抑制这些伪影几乎都会导致分辨率的损失。这项工作提出使用深度卷积神经网络(DCNNs)作为重建后的图像处理步骤,在不影响分辨率恢复的情况下减少重建伪影。与MLEM相比,DCNN的结果成功地抑制了环状伪影,并且使归一化均方根误差(NRMSE)降低了80%,而当MLEM的PS达到最佳水平时,其最佳降幅仅为0.2%。从DCNN得到的图像具有较低的噪声,减少了振铃和部分体积效应,以及更清晰的边缘和更高的分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning for Suppression of Resolution-Recovery Artefacts in MLEM PET Image Reconstruction
Resolution modelling in maximum likelihood expectation maximisation (MLEM) image reconstruction recovers resolution but at the cost of introducing ringing artefacts. Under-modelling, post-smoothing (PS) and regularisation methods which aim to suppress these artefacts nearly all result in a loss of resolution. This work proposes the use of deep convolutional neural networks (DCNNs) as a post-reconstruction image processing step to reduce reconstruction artefacts without compromising the resolution recovery.The DCNN results successfully suppress ringing arte-facts and furthermore result in an 80% lower normalised root mean squared error (NRMSE) versus MLEM, compared to a best decrease of only 0.2% when an optimal level of PS of MLEM is performed. The resultant images from the DCNN have lower noise, reduced ringing and partial volume effects, as well as sharper edges and improved resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信