参数不确定不匹配系统的滑模观测器

J. A. Silva, C. Edwards
{"title":"参数不确定不匹配系统的滑模观测器","authors":"J. A. Silva, C. Edwards","doi":"10.1109/VSS.2010.5544727","DOIUrl":null,"url":null,"abstract":"A sliding mode observer (SMO) analysis and synthesis framework for systems with mismatched parametric uncertainties is proposed. Stability of the uncertain state estimation error system is addressed using the concept of uniform ultimate bounded stability, also known as practical stability. The design methodology involves linear matrix inequality methods and employs a polytopic description for designing the gain matrices of the SMO. A numerical example illustrates the design methodology and its effectiveness.","PeriodicalId":407705,"journal":{"name":"2010 11th International Workshop on Variable Structure Systems (VSS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sliding mode observer for systems with mismatched parametric uncertainties\",\"authors\":\"J. A. Silva, C. Edwards\",\"doi\":\"10.1109/VSS.2010.5544727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sliding mode observer (SMO) analysis and synthesis framework for systems with mismatched parametric uncertainties is proposed. Stability of the uncertain state estimation error system is addressed using the concept of uniform ultimate bounded stability, also known as practical stability. The design methodology involves linear matrix inequality methods and employs a polytopic description for designing the gain matrices of the SMO. A numerical example illustrates the design methodology and its effectiveness.\",\"PeriodicalId\":407705,\"journal\":{\"name\":\"2010 11th International Workshop on Variable Structure Systems (VSS)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Workshop on Variable Structure Systems (VSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VSS.2010.5544727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Workshop on Variable Structure Systems (VSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSS.2010.5544727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种参数不匹配不确定系统的滑模观测器分析与综合框架。用一致极限有界稳定的概念来解决不确定状态估计误差系统的稳定性问题,也称为实际稳定性。设计方法采用线性矩阵不等式方法,并采用多面体描述法设计SMO的增益矩阵。数值算例说明了设计方法及其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sliding mode observer for systems with mismatched parametric uncertainties
A sliding mode observer (SMO) analysis and synthesis framework for systems with mismatched parametric uncertainties is proposed. Stability of the uncertain state estimation error system is addressed using the concept of uniform ultimate bounded stability, also known as practical stability. The design methodology involves linear matrix inequality methods and employs a polytopic description for designing the gain matrices of the SMO. A numerical example illustrates the design methodology and its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信