{"title":"基于用户策略的永不死网络选路方法","authors":"Noriki Uchida, Kazuo Takahata, Y. Shibata","doi":"10.1109/BWCCA.2011.30","DOIUrl":null,"url":null,"abstract":"A massive 9.0 magnitude earthquake hit the Pacific Ocean nearby Northeastern Japan causing damage On March 11, 2011. Recorded as 9.0 on the Richter scale, it was the most powerful quake ever to hit the country and caused severe damages over northern parts of Japan. This paper is discussed about the quick reports of communication traffic analysis and connectivity in the disaster area where electrity and network connection was survived. Then, our proposed Never Die Network in Disaster Information System is discussed with considering user policy from the reports. Just After the earthquake, network conditions were not enough to held multimedia communication because many network machines were damaged. However, it was very important to keep even minimal network connection to use Disaster Information System such as live, shelters, life line, and so on can be used. Our proposed Disaster Information System needs such a robust Never Die Network which will be provided the least transmission service even after severe disaster. Thus, we introduce Satellite System for optimal transmission control method in Cognitive Wireless Network in order to consider with severe disaster. First, as our previous study considering user policy, proper wireless link and route selection is held by Extend AHP and Extend AODV with Min-Max AHP value methods for optimal transmission control in Cognitive Wireless Network. Then, it is discussed about additional functions using satellite system in NDN. In the simulation, ns2 are used for the computational results to the effectiveness of the suggested transmission methods.","PeriodicalId":391671,"journal":{"name":"2011 International Conference on Broadband and Wireless Computing, Communication and Applications","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"User Policy Based Link and Route Selection Methods for Never Die Network\",\"authors\":\"Noriki Uchida, Kazuo Takahata, Y. Shibata\",\"doi\":\"10.1109/BWCCA.2011.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A massive 9.0 magnitude earthquake hit the Pacific Ocean nearby Northeastern Japan causing damage On March 11, 2011. Recorded as 9.0 on the Richter scale, it was the most powerful quake ever to hit the country and caused severe damages over northern parts of Japan. This paper is discussed about the quick reports of communication traffic analysis and connectivity in the disaster area where electrity and network connection was survived. Then, our proposed Never Die Network in Disaster Information System is discussed with considering user policy from the reports. Just After the earthquake, network conditions were not enough to held multimedia communication because many network machines were damaged. However, it was very important to keep even minimal network connection to use Disaster Information System such as live, shelters, life line, and so on can be used. Our proposed Disaster Information System needs such a robust Never Die Network which will be provided the least transmission service even after severe disaster. Thus, we introduce Satellite System for optimal transmission control method in Cognitive Wireless Network in order to consider with severe disaster. First, as our previous study considering user policy, proper wireless link and route selection is held by Extend AHP and Extend AODV with Min-Max AHP value methods for optimal transmission control in Cognitive Wireless Network. Then, it is discussed about additional functions using satellite system in NDN. In the simulation, ns2 are used for the computational results to the effectiveness of the suggested transmission methods.\",\"PeriodicalId\":391671,\"journal\":{\"name\":\"2011 International Conference on Broadband and Wireless Computing, Communication and Applications\",\"volume\":\"215 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Broadband and Wireless Computing, Communication and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BWCCA.2011.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Broadband and Wireless Computing, Communication and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BWCCA.2011.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
User Policy Based Link and Route Selection Methods for Never Die Network
A massive 9.0 magnitude earthquake hit the Pacific Ocean nearby Northeastern Japan causing damage On March 11, 2011. Recorded as 9.0 on the Richter scale, it was the most powerful quake ever to hit the country and caused severe damages over northern parts of Japan. This paper is discussed about the quick reports of communication traffic analysis and connectivity in the disaster area where electrity and network connection was survived. Then, our proposed Never Die Network in Disaster Information System is discussed with considering user policy from the reports. Just After the earthquake, network conditions were not enough to held multimedia communication because many network machines were damaged. However, it was very important to keep even minimal network connection to use Disaster Information System such as live, shelters, life line, and so on can be used. Our proposed Disaster Information System needs such a robust Never Die Network which will be provided the least transmission service even after severe disaster. Thus, we introduce Satellite System for optimal transmission control method in Cognitive Wireless Network in order to consider with severe disaster. First, as our previous study considering user policy, proper wireless link and route selection is held by Extend AHP and Extend AODV with Min-Max AHP value methods for optimal transmission control in Cognitive Wireless Network. Then, it is discussed about additional functions using satellite system in NDN. In the simulation, ns2 are used for the computational results to the effectiveness of the suggested transmission methods.