基于运动图像的脑机接口协同学习的实证建议

Eunsong Kang, Bum-Chae Kim, Heung-Il Suk
{"title":"基于运动图像的脑机接口协同学习的实证建议","authors":"Eunsong Kang, Bum-Chae Kim, Heung-Il Suk","doi":"10.1109/IWW-BCI.2016.7457450","DOIUrl":null,"url":null,"abstract":"In modern Brain-Computer Interfaces (BCIs), it usually requires the so-called calibration session to adapt a BCI model, e.g., spatial filter and classifier, to a target subject before use, due to high intra- and inter-subject variability in brain signals. From a practical perspective, this is one of the main challenges that should be resolved, thus motivating to use information from other subjects via collaborative learning. In this study, we analyze the effects of utilizing data from other subjects and identify whether generic patterns, which are informative for general BCI, exist by conducting experiments on the BCI Competition IV-IIa dataset. Based on our two experiments of naïve inter-subject BCI and generic pattern-guided inter-subject BCI, we suggest utilizing 1) categorical information of training samples and 2) samples of generic patterns for generalization of a BCI model.","PeriodicalId":208670,"journal":{"name":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An empirical suggestion for collaborative learning in motor imagery-based BCIs\",\"authors\":\"Eunsong Kang, Bum-Chae Kim, Heung-Il Suk\",\"doi\":\"10.1109/IWW-BCI.2016.7457450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern Brain-Computer Interfaces (BCIs), it usually requires the so-called calibration session to adapt a BCI model, e.g., spatial filter and classifier, to a target subject before use, due to high intra- and inter-subject variability in brain signals. From a practical perspective, this is one of the main challenges that should be resolved, thus motivating to use information from other subjects via collaborative learning. In this study, we analyze the effects of utilizing data from other subjects and identify whether generic patterns, which are informative for general BCI, exist by conducting experiments on the BCI Competition IV-IIa dataset. Based on our two experiments of naïve inter-subject BCI and generic pattern-guided inter-subject BCI, we suggest utilizing 1) categorical information of training samples and 2) samples of generic patterns for generalization of a BCI model.\",\"PeriodicalId\":208670,\"journal\":{\"name\":\"2016 4th International Winter Conference on Brain-Computer Interface (BCI)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 4th International Winter Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2016.7457450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2016.7457450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在现代脑机接口(BCI)中,由于脑信号在受试者内部和受试者之间的高度可变性,通常需要所谓的校准过程来使BCI模型(例如空间滤波器和分类器)在使用前适应目标受试者。从实践的角度来看,这是应该解决的主要挑战之一,从而激励通过协作学习使用来自其他学科的信息。在本研究中,我们分析了利用其他受试者数据的效果,并通过在BCI竞赛IV-IIa数据集上进行实验,确定是否存在通用模式,这些模式对一般BCI有帮助。基于naïve主体间脑机接口和一般模式引导下的主体间脑机接口两个实验,我们建议利用1)训练样本的分类信息和2)一般模式样本进行脑机接口模型的泛化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An empirical suggestion for collaborative learning in motor imagery-based BCIs
In modern Brain-Computer Interfaces (BCIs), it usually requires the so-called calibration session to adapt a BCI model, e.g., spatial filter and classifier, to a target subject before use, due to high intra- and inter-subject variability in brain signals. From a practical perspective, this is one of the main challenges that should be resolved, thus motivating to use information from other subjects via collaborative learning. In this study, we analyze the effects of utilizing data from other subjects and identify whether generic patterns, which are informative for general BCI, exist by conducting experiments on the BCI Competition IV-IIa dataset. Based on our two experiments of naïve inter-subject BCI and generic pattern-guided inter-subject BCI, we suggest utilizing 1) categorical information of training samples and 2) samples of generic patterns for generalization of a BCI model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信